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E D I T O R ’ S  PREFACE

VOLUME I

This was the twentieth Geophys i ca l Fluid Dynamics program at

Woods Hole. Stephen Chi ldress of the Courant Institute was our princi pal

lecturer. Dynamo theory , with all its interdisci p linary facets was our

centra l theme . Geomagnetism and the solar magnetic cycle were brought

closer to comprehension , yet none claimed a detailed predictive theory

was near at hand. Perhaps J. Keller ’s lecture , entitled “Smooth equations

for rough problems ”, best characterized the nature of these studies. Even

then , the smooth equations are quite nonlinear , with finite-amplitude

magnetic solutions yet to be explored . Lectures intertw i ned with those

of Childress exposed us to top ics beside and outside his emphasis on a

convective geodynamo .

The fellows of the summer program were responsible for the notes

of the princ i pal lectures and checking their content with Chi ldress.

Extended abstracts of addresses by p rogram staff members and the ten

partici pants in the July mini-sympos i um on magnetoh ydrod ynamics were

prepared by the speakers. The eleven lectures of the F~ l lows are recorded

in the second of this two-volume report.

Mary C. Thayer has gathered and typed all the abstracts , lecture

reports and fellowshi p papers -- for a twentieth year! Fellows and staff

salute her skill and patience with an often recalcitrant crew .

We thank particularly Dr. Ralp h Cooper , and through him the Office

of Nava l Research and the Nationa l Aeronautics and Space Administration for

continuing support and encouragement.

W illem V. R. Ma l kus
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COURSE LE CTURE S

by

Step hen Chi ldress
New York University

Courant Institute of Mathematica l Sciences

Lecture #1 . INTRODUCTION TO GEOMAGNETIC DYNAMO THEORY

1 .1 Historical Introduction

The problem of explaining the origin of the magnetic fields of the earth

and sun is a difficult one , and only in recent years has substantial progress

been made towards its solution . The following is a list of some of the decisive

contributions made by scientists and mathematicians who have tackled the problem.

1919 Larmor asked how a rotating body, such as the sun , could become a

magnet. One of the suggestions he put forwa rd was that the magnetic field was

maintained by the motion of the electricall y conducting fluid of which the sun

is composed .

1934 Cowl i ng fou nd that a stead y axi-symmetric magnetic field could not

be maintained by fluid with an axi-symmetric veloc i ty field (with the same axis

of symmetry). This was a ‘grea t step backwa rd ’ for dynamo theory , since it is

very natural to look for axi-symmetric fields when dealing with a rotating bod y.

1 946 Elsasser stud i ed non-axi -symmetr ic magnetic and veloc i ty fields.

1954 Bu Ilard and Gel lman pointed out the importance of differential rota-

tion for generating a “toroidal” field from a “po loidal” one , and the importance

of non—axi-symmetric motions for distorting the toro i da l field to produce “pol-

oida l” fie ld. (We shall define these terms presently.) However , the fluid mo-

tions they considered were not capable of indefinitely sustaining a magnetic

field.

1955 Parker provided a phys i ca l argument to explain how irregular upwell-

ings of fluid could produce a mean magnetic field when their inductive effect

was averaged over space and time . This was a major break-throug h in dynamo

theory.

1964 Brag inskii considered nearl y axi-symmetric systems with very hig h

f l uid conductivity, using a forma l asymptotic procedure .

1966 Steenbeck , Krause and Rad ler considered turbulent dynamo s. the
I 

length scale for the turbulent component being much shorter than that for the

mean component. Since this paper , much work has been done on turbulent dynamos. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1.2 The Earth’ s Magnetic Field

The earth can be regarded as a sphere of radius 6.4 x 106m , of which a

shell of inner radius 1.4 x lO 6m and outer radius 3.5 x lO 6m is composed of

electrically conducting fluid , mainl y molten i ron . Inside the shell is a solid

core , and outside the shell is the mantle , which can often be regarded as a

solid insulator , although sometimes its visco-elastic deformations or small con-

ductivity need to be taken into account. The basic facts of the earth’ s magnetic

field which any theory must exp lain are :

(A) The field is permanent; that is , it has been in existence for the whole

of the earth’ s history, thought to be abou t lO~ years.

(B) There are large-scale changes of structure , name l y reversals of polar-

ity, on a time scale of order lO~ years.

(C) There are small—scale variations on a time scale of the order of a hun-

dred years. 
—

Table 1 shows estimates of the main physical pa rameters of the earth rele-

vant to the subject-matter of these lectures. Since the decay time , 105 years ,

for the earth’ s field in the absence of any fluid motions in the core , is much

less than the age of the earth , 109 years , it is clea r that we must l ook to fluid

motions for the exp lanation of the persistence of the field.

The reversals of polarity have been statisticall y ana l ysed by Cox (1968)
who claimed that the probability that the time between successive reversals lies

between t and t + dt is

where to = 2 x lO~ years. However , it is questionable to fit a particular type

of probability distribution in the absence of a theory of the underly ing mech-

anism. Further , as more data becomes available of the history of the earth ’ s

field , it may become necessary to put in more reversals , so tha t what is now be-

lieved to be a period of one particular polarity may subsequently need to be

split into smaller periods of different polarity. Thus statistical formulae may

need to be revised .

The most interesting feature of the small-scale var iations is the west-

ward drift of the non—d i pole field. After performing a harmonic analysis of

the earth’s field it is easy to remove the dipole component , and a contou r map

can then be drawn showing, for example , lines of constant vertical component

~

- - _ *- - - - — .--“.~~~~~~~~~~~~~
—_

- - ~~~~~~ _~~~~~~~-
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Tabl e 1 . Physical Parameters of the Geodynamo

Symbol Meaning Units Value

L core radius m 3 .5  x 106

electrical conductivity m 3k’ 1 sq2 = mho/m 3 x 105

magnetic diffusivity m2s~~ 3
V diffusi on time s 4 x 10 12 = 105 yr

fluid density km 3 l O~
kinematic viscosity m2s ’ 1O 6(?)

rotation viscisity s ’1 7.4 x 1O~~
T core temperature 0K 4000

Cp specific hea t m2s”2 oK_ l 670
A therma l conductivity mks”3 oK l 60
s( coef.of volume expansion OK l 5 x 10-6

therma l diffusivity m2s~~ 1 0”S

accel. of gravity ms ’2 5
mean temp . gradient 0K m~ 2 x l O 3 ( ? )

B magnetic field ks~~q~~ io 2 = 100 gauss

VA A l f v ~n speed ms ’1 10-1

V speed ms 1

-u  
Q core heating rate m2ks ’3 l O l2 _ l0 13

1 gauss = lO ’~ kq’~~s
’1

1 joule = 1 m2ks ’2 = .239 calorie

I vol t = I m2ks 2q~~
1 ohm = 1 m2K s’~~q

”2 = I mho~~
= 4TC x l O ”

~ mkq
”2

of the non-d i pole field. The main features of such a map drift westward at a

typ i ca l rate of 0.20 of longitude per year , although some features move faster

than others. It is not known whether this s caused by wave motion in the core ,

or bulk motion , or both; and it is difficult to do an experiment to find out

It should be noted tha t the sli ght conductivity of the mantle p laces a l ower

limit on the time scale of magnetic effects observable at the earth’ s su rface .
For if 

~~ 
is the magnetic d i ffusivity of the mantle , and L i ts th ickness ,
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then any magnetic field at the bottom of the mantle varying on a time scale

less than L~)/r~ will  be greatl y reduced in magnitude by diffusion . Using an

estimate of fl~~1 , this time scale is abou t 10 yrs.

1.3 The Basic Equations

The physica l quantities needed in the ana l ysis are :

B (x ,t) = magnetic field ,

j (x,t) = current density,

E (x,t) = electric field ,

U (x ,t) = fluid velocity

= electrica l conductivity,

/4 = magnetic permeability,

~~~ 
(a)~...t) = magnetic diffus ivity.

The equations satisfied by these quantities are the ‘pre—Maxwel l’ equations

and Ohm ’ s Law:

div B 0 (1 .1)

curl B = 1.2j (1.2)

curl E = — -
~~

-
~~~~ (1.3)

i = ( ~~+~~~~~l~ ( 1. 4)

The pre-Maxwe ll equations (which neg lect the displacement current term in

(1.2) hold on the assumption that the time taken by li ght to traverse the

region of interest is small compa red with the time scale of the events being

described . On taking the curl of (1. 1+) and eliminating j and E using (1.2)

and (1.3) we obtain

(1.5)

This is the fundamenta l equation for B. Equation (1.5), and the Navier-Stokes

equation (with a forcing term of JA B per unit volume) , form the foundation of

theories of the evolut ion of magnetic fields in fluids.

To simplify the problem , we often rega rd u as being given , and use

(1.5) to determine the evolution of B; the equation is then linear. This is

called the kinematic approach. The resulting problem is st ill difficu l t , how-

ever , and further simp lify i ng assumptions need to be made. The most obv i ous [

~1 
—~~~~ - --~~~~~~~~~

---
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way to p roceed is to see when one or other of the terms on the ri ght-hand side

of (1.5) is neg li gible compared with the other. To this end , let

U. = typica l fluid velocity,

L = typica l length scale for variation of u and B

Then l cu~-~ (~.~~B) ) 
__

The quantity UL. /n, is called the magnetic Reynolds number , and is denoted byR~,,.
(In the earth’ s core , R~ is typically abou t 100). So from (1.5) we obtain

-
~~~

-
~~~
- 

~~~~~~~~~~~~ (R~~>~.j) (1.6)

~~~~~~~~~~~~~~~~ B (1.7)

Equation (1.6) is exact when~~~~O (perfec t conductivit y, i.e .~~~~ ~~ 
) ,  and

(1.7) is exact when u =  0. Equation (1.7) is just the diffusion equation , and

whe n R~<< 1 often gives a good approx i mation everywhere to the true solution .

When R~>>I , however , (1.6) fails to be a good approx i mation in boundary layers ,
where diffusion is important , and in these regions a closer approximation to the

full Eq. (1.5) must be used .

1.4 Exact Solution for a Perfec t Conductor

The equation for B in a perfec t conductor is

= cu.~ t 
(~~~:A ~

.). ( 1 .8)

Taking u as given , this can be solved exactly using Lagrangian coord i nates. Let

the position at time t of a fluid particle initially at a b e  x (a ,t), so that
- .  

x(a,o) = a , and le t

~~~

_p(x,t) = fluid density.

For any function f ( x ,t) let the function ~~(a,t) be defined by the equation

$ ~~~~~~~~~ h -) ,
and let denote differentiation with respect to time , keep ing a fixed , so
tha t .11; ~~—.~~~ - —c-- 4 LI.. ‘ V

..D t dt —

Then conservation of mass implies that

- —_ - — , _  ~~~~~~~~~~~~~~~~~~~~~~~ . r . ’ .

~~~~~~ - - — ~~~~~~~~~~~



-~~~~~~~~ -

D =

and

Hence j ~— (D)~~
_ 

~~~~~~~~~~~~ (cL v
~~~~~ D (1.9)

(This can also be established direc tl y from the expression for the determinant

D.) Equation (1.9) enables us to show that the solu tion of (1.8) is

~j~(x t) -
~~~

- 

~~~ ~~~~~~~~ (1.10)

For (1.9) and (1.10) imp l y that

~~~~~~~~~~
(

~D8~~~) =  ~~~~~.(a.,o).

and

~~-CnL3~
) (d&v~ ) J 3 .~~~~ -~

Hence

~~~ ~~~~~~~~~~ BL’

~~~~~ (~Liv~ )n~ ,

which is the same equation as (1 .8). Th is proves tha t (1.10) solves (1.8). The
meaning of (1.10) can be shown by writing it in the form

_______  
~~~~~~~ 5~ (~~, o) 

,.~(z,~’) 
- ‘~a.j ~ ‘ (~~,o)

and comparing it with

~~~~~~~ 
~~~~~~~~~

~ a.J ~
It follows that is transformed like a ma terial element , and that the field
acts as if it is ‘frozen ’ in the fluid .

1.5 Dynamos

The f unda men tal question of kinematic dynamo theory is this : given a volume

V of e lec t r i c a l l y conducting fluid , wh i ch veloc i ty f i e l d s  u a re such tha t when B

L 

evolves accord i ng to (1.5) it does not ultimately decay to zero? This question

w i l l  be consi dered in some de ta i l in  Lec tu re 2. For the t ime be in g , define a 
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dynamo as a system eompr is ing V , B , u , 7~ such tha t the magnetic energy

5
a.//Sp~~~e

is bounded away from zero for all time . (Of course other measures of magnetic

fie ld strength might be used.) If V is not the whole of space then the condi-

tions outside V must be specified . It is common to take V as a sp here and the

volume outside V as an insulator; this is a good model for the earth’ s d ynamo .

Roug h l y speaking, for a system to act as a dynamo , the convection term curl

(u A B) in (1.5) must be such as to compensate for the dissi pation term a
1.6 A Non-d ynamo

Consider the following means of try ing to make a dynamo . At t = 0, a

magnetic field is present in a stationary conductor. We wait a time ~~t , during

which time u =  0 and diffusion operates accoeding to (1.6). At time t =~~~t we

instantaneousl y stretch the conductor and fold it over so that it occup ies the

same reg ion of space as before. During the folding, diffusion has no time to act

and so the field satisfied (1.8) (note that during the stretching and

folding, so that Rm = ~~ O )
~ Assume that the conductor is imcompressible;  then

the field can be intensified by stretching in a direction parallel to B , because

of the term ~~x~/~ z,j in the solut ion (1.10) of (1.8). We now repeat the process

• by waiting from t = L~t to 2L~t and then folding again; this is continued indef-

initel y. Thus we alternate between field intensification and decay. By choos i ng

suitable deformation , the net result mi ght be thoug ht to be a relentless increase

in B (i.e .1B t
~
—,oo as t— ~ ) ,  thus g iving a d ynamo . However , we do not always

obtain a dynamo , and an example of this is now given.

Let the whole of space be filled by an incompressible substa nce of mag-

netic diffusivity , and at time t = 0 let the magnetic field B(x ,t) be

L3 ( X ~~~~, O) _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ( 8e,O)0
~~

2
~~~~ 1)~~~~ ~ ~~~ 2~~ L,

m =

as shown in Figure 1 . At time ~~t each band of width L is stretched to three time s

its ori g ina l length in the x-d i rection and folded over on itself to produce the

configuration shown in the second part of Fig. l . To achieve this , we ca n conce i ve
of each band be in g chopped in to sec t ions of len gth L 1 >> L and then folded into W-

shapes. The end reg ions of these sections , where the field is not as shown in the

diagram , w i l l  have a n e g l i g ible effect. At time t = 2~~t , a similar procedure is

~~~~~~~~~ - - - 
_ _ _ _  

_ _ _ _ _ _
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The stretching and folding p rocedure . (See Section 1- 6 .)
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1

used to g ive the confi guration shown in the third part of Fig .l.

The stretching intensifies the field by a factor of 3 (this is a conse-

quence of (1.10), and so we have

where h~. = 1 , 2, 3, . . . It is clear that B is always in the x-d i rection and

depends only on y and t; so write

~~~~~~~~~~~ 
t)  5 a • 0)

We wish to find B(y,t) explicitly. Hence the following problem must be solved :

~~~~~~~~~~~~~ ~~8 (t>o
at 

t4~~~t,2.At,.
- oo< 

~ 
<

38 (3~~,ni~ t )  ( r~ 1 , 2 , . ~~

~~
)

o

The simplest way to ~olve this is to change the space variable by a factor of 3

at times t = A t , 2~~t , . • So define a function f(y,t) satisf y ing:

___  - (.t) (
~~>°

~~~~~ ~
2 mI_ .

~~& ~
( i  ((~rt+OL�~ j< z mL )

(The fact tha t I/a? does not exist at t = 0 does not matter; it will exist

for all t > 0.) The function ~ (t) is defined by

y~,(t) (
~
. (o~~t < A t )

9 r10 (At~~
.
~~~.< 2At)

~~ (2A t~~~t - ~~ 3t ~t )
\~ 

t~.
Then B(y,t) is given by

where A/(t) is defined as the integer )~ satisf ying

n~~t ~~t ~
It onl y remains to find f(y,t). By putting

~
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(t)_ciy, (2 i)ir -~
-
~

It is easil y seen that -
~~

~~~ t)=~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
where ,. w (~

)
~~ t ) = 9  

~~
We can now show that B(y, t) —f 0 as t —~~o , uniforml y in y. For

J~~ ( y s t) ezp [ _ ~~~3 J t ~) c Lr 3~ -~ -~~~~Tf~~~ SJ~n (anii) -~~-J

Now when t ~~ A t , we have

5 (~~

. 

9
/V(t)~~~

ir~

and so

f~ 
(~ ,t)~ e~p ~~- 

~~~~~~~ . 
W(t)~0 ~ j

Hence

~ 3
/V(t)

exp [
~ ~~L~

9~~~~~~~~~} 
F

and so the magnetic energy density tends to 0 as t—~ ao . Thus the stretch- -

ing procedure described above is not capable of sustaining a magnetic field.

The phys i ca l exp lanation of this is that the stretching increases the field by

a factor 3N (t), but the diffusion dec reases it at least by a fac tor of

~~~~ 
w(t)

ex.p L_
~~~~

9 rj.A.€
I~
.;

clearl y the latter term is dominant except possibly during an initial period ,

This is in fact a feature of all two-d i mensiona l systems where there are no

z-components of any of the fields , and everything is independent of

An alternative procedure is to adjust the time s between foldings so tha t

the energy does not decay. But it then turns out that the time intervals re-

quired become shorter and shorter so rapidly that the sum tend s to a limit as

the number of them tends to infinity. So this method does not work either. J
It is of interest to contrast this situ ation with wha t mi ght be achieved

by three-d i mentiona l deformations . Alfven has suggested the process shown in

~1

—_-*- -- --—-- —— -•-—-.--—-----——- - - — — - — - •  :-- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig .2 , which , at each step, doubles the field intensity at the expense of a

small “x-point ” where diffusion can be expected to be important. Nevertheless ,

diffusion penalty here would appea r to be qu i te small. Unfortunately there is

no simp le way to compute the process and establish that a dynamo effec t occurs

when ~ 0.

Fi g.2
Notes submitted by
John Chapman and

Frank Condi .

References

Cox , A. The lengths of geomagnetic polarity intervals. 1 968 J.Geophys.Res.
73 : 3247-3260.

- - - Reconciliation of statistica l models of reversals. 1970. Ibid.

Gubbins , D. Theories of geomagnetic and solar dynamos . 1974 Rev .Geophys.Space
Phys. 12: 137-154.

Hide , R. and P.H .Rober ts. Th e or ig in of the main geomagnetic field in Phys i cs
and Chemistry of the Earth , 4, Ahrens et al eds.27-98. Pergamon 1961.

Moffatt , H.K. 1978 Magnetic Field Generation in Electrically Conducting Li quids.
Cambridge University P ress.

Roberts , P.H. l 967a. An Introduction to Magnetoh ydrodynamics , Chap .3,Elsevier.

- - - 197 1 (W.H.O.I. Report) Dynamo theory, in Mathematica l Prob l ems in
the Geophy s i c a l Sc ie nces , ed i ted by W .H .Re id , Am .Math.Soc., l 29-2O6. 

-- --• - -—•-- - - —----~~ - . - -- - - -~~~~~ -- - - - -



— —.——~ -—- -------— 
—I’

- 1 2  ‘1
Lect ure / 12 . SOME NECESSARY CONDITIONS FOR DYNAMO ACT ION

(2.1) The Rate of Change of Magnetic Energy

In this lecture we shall consider a finite vo l ume V of electricall y con -
~~

ducting fluid , of constant, uniform magnetic diffu s iv i ty ~~~, 
, surrounded by a

motionless insulator occupy ing the rest of space , V. Then as shown in Lecture #1 ,

the equations for the magnetic field are

= ~~~~‘ (~~ ~~ o (~ n V) (2.1)

cu~ I 8 :0, V .  ~~~~ 
(L r? Q), (2.2)

where u is the ve l ocity of the fluid. The boundary conditions on 5, the surface

o f V , are

[!3~~~~]~~ ô , [nxej ~ (2.3)

[n AE ] -
~~o 

(2.4)

where f denotes the jump across S. The first equation (2.3) follows from

d iv B = 0, and the second follows from curl B =p~-j, since there are no surface

currents and hence j is everywhere finite. Equation (2.4) follows from (1.3)

and boundedness of B. Equations (2.3) and (2.4) say merely tha t B and tangen-

tial E are continuou s across S. We also assume that there are no ‘sources at 
—

infinity ’ , so that

5 O(r ’3
) cts I- --—

~~
. c~ (2.5)

where r . In the kinematic theory, we take u as being g iven , and so

(2.1) = (2.5), together with the initial value of B everywhere , provide a com-

plete specification of the prob l em of dete rmining the evolution of B.

The magnetic energy is

~~~(t) ~~ç~~~ ,t~~
t B~d V,

v.t-v
and we now derive two expressions for dE m/dt , using the equations above p lus

the equation (1.3),

c~~ l ~~ —~~~~~~/a~~
-.

~Ie also use the fact that

I E j ~ O~ r~~ ) ~~ r—~ ~~ 
(2.6)

(since the charge is confined to the finite reg ion V), and we use Ohm ’s Law

(1. 4) in the form

CUl- I ~~~= ~~~~~~~~~~ (2.7)

- —~~~~~~~ - - - • - —-

-~~~~~~~~~ •~~~~~~~~~~~~
---

~~~~~
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Th us 
~~ m / ~ V

v+v

~—s ~~~~~~~~~~~
v-t v

The first term vani shes (using the divergence theorem and (2.5), (2.6) and the

second term is zero in V. So by (2.7) we obtain

• (8. cu4 B) dv— 
~ ~ V (2.8)

This is our first expressj~ n for dEm/dt. Using the fact that

we can obtain a second expression provided that we assume more , name l y that

di v u = 0 (incompressible flow) and u on S. Then the first term above is

by the divergence theorem , and the second term is

—

The first term here is zero (by the divergence theorem aoain), and we are

finally left with

where
~~~~~~~~~~~~~~ ~~ J
‘i ‘ ~a-~

Hence from (2.8) we obtain a second expression ,

B~ L3Je1.~/~V’ - ~ . f ( c ~~ i ø ) ’~AY. (2.9)

The basic difference between (2.8) and (2.9) is that u enters (2.9) onl y throug h

its spatial derivatives , while it enters (2.8) only through its undifferentiated

values.

In both (2.8) and (2.9) the first term on the ri ght-hand side represents

rate of creation of magnetic energy by the agency providing the fluid motion , and

the second term represents rate of destruction of magnetic energy by ohmic decay .

- - - . - - -----

~

- --• — - • --- - - - • - - - . - - - - - - - - — -—~~~~~~~ .- —  - —- —- -
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(2.2) Two Necessary Conditions for Dynamo Action .1
We say that a veloc i ty field U in the volume V defined above capable of

dynamo action if for some initial magnetic field there exists a constant E~ ,

strictly greater than zero , such that

£,~ 4or ~.jI t ~ 0. J
Hence if it is possible to find a function f such that

f~.i ~~~L /

then a necessary condition for dynamo action is tha t f is not always negative

(when B is not everywhere zero). It is shown below tha t Eqs. (2.8) and (2.9)

provide us with two such f’ s. We need to use the length defined by

- I S (
~

w n 1
~

)
~~’l

~~ 8 € J B J  ~ L3~ AV
where .113 is the class of admissible functions over which the minimum is found ,

taken to be the set of all solenoidal fields continuousl y differentiable in V ,
A 3irrotationa l in V . continuou s across S , and O(r ) at infinity. (It can be

shcwn that if V is sphere of radius L , then .~~ L/ir.) Let um be the maximu m

val ue of j u l  , and let )~.,.,, be the maximum ei genvalue of the tensor (e Lf ) .  In

each case the maximum is taken over all time and all .X in V. It can easil y be

shown that if u is not everywhere and always zero , then X ,,,~’O. Using the

Cauchy-Schwarz inequality and the definition of £ we obtain

I . (8 c~
rj

~~) d v I~~ ~~c t ~i icu~lmdV

~~~~~~ 
~~~~~~~~~~~~~~~~~

~~~uP~~O t ’ ç J C L 4 4 B )
1

cL V,
and

�~~~~ c I a I ~~V~~t r n s ) 1 3 I oLv

~~~~~~~~ (jcR~~J3) cLV

Hence (2 .8)  and (2.9) g ive the inequa l i t i es

~~~~ ~~— ( — i ÷ . ~~
.
~- )  ç j c ~ ri ~~ j~~LV 

_
‘I (2.10)

S

-1
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Therefore two very simp le necessary fonditions for dynamo action are
A m
p

>

Note that ~~m c~~/ i i~, is the magnetic Reynolds numbe r based on the length scale

If V is convex the max i mum distance apart of any two points in V is denoted by

D , then by the vector mean-value theorem

L1.~-, ~

If we regard , D , and 
~7, 

as g iven , then (2.11) and (2.12) impl y that any

veloc i ty field permitting dynamo action must be such that U~, and ~‘-m 
lie with-

in the shaded reg ion shown in Fig.l (a). We can express this result in terms of

the dimensionless variables defined by

N
)

-~~~~~~~ / N

Fia 

- 

a 
/  

‘A

(&) 
\ \

AR m °~~
‘

A necessary condition for dynamo action is tha t the parameters shown lie in the
shaded areas. (See section 2.2 for the definitions of these parameters.)

Then (2.11) and (2.12) become
3*

~~~ ~~~~~~~
and so regarding °~ as g iven , we see tha t ~A and Rm must l ie in the shaded reg ion

shown in Fi g.l (b). It should be emphasized that these conditions are not suffi-

cient for dynamo action .

~‘1 

-- - - -- - - - - - - - -- —-.~~~~~---- -—---- ~~- -
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It is very plausible that an i nequality such as the second part of (2.11)

should be a necessary condition , since it was shown in Lecture #1 that shear can

greatl y intensif y B by stretching the field lines. The first part of (2.11) is

not so obvious , however , because this inequality depends only on the magnitude

of u , not its derivatives. Note however that we have not had to select a special

coord i nate system , so um could have been chosen relative to any convenient coord i-

nate frame . In particular , in a spherical domain we deduce that core motions must

differ from solid-bod y rotation by an amount urn consistent with these i nequalities.

It is very probable that these estimates have counterparts in electrical

circuit theory. The i nequality involving X ,.~ was first derived by Backus (1958 )

while that involving u was noted by Chi ldress (1969). There is considerable room

for improved estimates of dynamo action . Recemt;u Proctor (1978) has observed that

Backus ’ estimate can be improved by 2O~ if the integra l of 1B 1 2 over V is retained
A

in the estimate of 6.... instead of extend i ng the integra l to V + v). Such refine-

ments comp licate the variational problem which must be solved to comp lete the esti-

mate , but presumabl y move us closer to realistic estimates for the dynamo process.

It is also possible to sharpen necessary conditions by elaborating the

structure of admissible magnetic fields. We consider next a condition of this kind .

(2.3) A Third Necessary Condition for Dynamo Action

Busse (1975) has obtained another necessary condition for dynamo action by

sp litting B u p  into its toroida l and poloidal parts:

B cu~I (TX) CL.~rI W V )  (P
~~

)

This decomposition is always possible for a solenoidal field; P and “1 are sca-

lar functions of position , to which an arbitra ry function of r can be added with-

out altering B. Busse showed that

~~~ ~~~~ 
(
~~~

)
where Em is again the total magnetic energy, E~ is magnetic energy in the po loidal

part of B , and V is a sphere. It is assumed that div u = 0 and u = 3 on S , the sur-

face of the sphere. Thus we obtain a third necessary condition for d ynamo action :

/ z E
~~~~~~ (u. .x )  > I ‘

V —

This condition is of rather a different type from those derived in (2.2), since

Ep/Em depends on B. As an examp le of its use , we can deduce , from the fact that

the magnetic field in the earth has a po loida l component , that there are radial

-

~

--—  ——---—~~~~--—-~~ - 
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fluid motions there . This is relevant when considering convection .

(2.4) A One-d i mensiona l Analog

It would be of interest to solve Eq.(2 .l) for B , g iven some particular

class of veloc i ty fields u , and then relate the necessary conditions derived to

the occasions when dynamo action actuall y occurs. Unfortunately this is diffi-

cult to do , because the equation is so hard to solve ; indeed , th is is why it is

worthwhile to derive the necessary conditions in the first place. So we l ook

for a simpler equation , which we hope retains the i mportant features of (2.1)

and which we can solve exactl y. The corresponding necessary conditions for dy-

namo action can be derived , and then compared with the exact solutions of the

simple equation .

As such an equation take u and B to be complex-valued functions of x and

t satisf y ing 2.

~~~~~~~~~~~ 
.
~~~- ~~~~~~~~~~~~~~~~~~~~~ oo, t~~ 0) (2.14)

(it is something of an act o~ faith that the solutions of this equation behave ,

in some sense , like the solutions of Eq .(2.l) ~). Note that (2.14) has been made

nond i mensional; assume that this has been done by measuring x in units of L , and

u in units of the maximum velocity, urn ; then t is measured in units of L/um .

The quantity R in (2.14) is then the magnetic Reynolds number umL/ fl,

The first step is to derive an inequality corresponding to the first part

of (2.10). To do this multi pl y (2.14) by B~ and integrate with respect to x

from a to b , say, to obtain

4. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.15)

Assume that a and b can be chosen so that the integrated parts vanish: this will

be possible if , for example , u and B are space-periodic. Taking the comp l ex con-

jugate of (2.15) and adding to (2.15) g ives

~
( s*.~~: ~ 

~ *~-)c.L~
... 

~~ j  
I - ~~ 

(2.16)

Define cL by the equation

—U 

— —.— — .—.--—--- - —.---- —- -- — .---  —- --- —- . -——-—-- — a— .-.-~~ - — ~~~~~~~ - —-------- —-~~-—---~i~ ~
_— —- - ~~-_ —
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~~~

=~~~~~~~ (2.17)

where is some suitable class of functions. Now u ~ 1 , because u is meas-

ured in units of Urn, the maximum va l ue of (u ’ , and so using the Cauchy—Schwarz

i nequality and the definition of o1 . , (2.16) g ives

~~ -~~jBI
t
d~~ ~ 1~ Z~ 1~ $j~d -*J *H~4. 

(÷ )ç 1~~
r- (2.18)

This is the ana l og of the first part of (2.10). It implies tha t a necessary

condition for dynamo action is R. ) • -  , that is

_____  > (2.19)

We now solve (2.14) exactl y for the particular ve l oc i ty field

~~(~~t)= ~~~~~~~ ~ 
(2.20)

where LA.) is a constant. Try ing the solution

L ?(~ ,t)~~e
L
~~

+0
~
t + Ae~~~~

4.
~~

t , (2.21)

where y~ , , , 6~ and A are complex constants , as yet unknown , we obtain

c~~~ -(cc. -~ ) = ( n - l ) e

~i-A (~i -i)e
and

‘~B ~ ____ = (a.. h’ \ inx -4 o-t

~~~~ ~~~X
t

~~~~~~

~~ jxi.~~t

Therefore (2.21) solves (2.14) if

= — (
~~— I),

A (~~.4-~~) ~~r~ - i
A ( r i — I )  =c-~i

If it is assumed tha t B is bounded when t = 0, then 11 must be real; so assume

this. Hence a solution of (2.14) is 

- - - ~~~~~~-- 
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8 (z , t)~ e ~~~~~~~~~~~ 

~~ 
y.L ) _ ~~(n~~)~ + (c~~ .~)t (2.22)

w here

~(i—n) 

~~~~~~~~~~~~ 
(2 . 23 )

We can regard (2.22) as a famil y of solutions labelled by the sing le parameter

since for g iven fl Eq.(2.23) determines just two available values of C

We are interested in whether the solution (2.22) decreases to zero or

grows withou t limit as t—>c~s.o . This is determined solel y by the si gn of

the rea l part of a ; for a g iven V1_ ,the system acts as a dynamo if and onl y if

the larger rea l part of the two possible values of C~ is positive.

We now dea l with the case ~ ~~O in more detai l . Equation (2.23) when

g ives 
_ _ _  + 

~{~~
÷ 2w ( I _ -

~
-
~-)J 1 

(2.24)

where

From (2.22) it can be seen that the approp riate length scale for the solution

B is the larger of ~, r’~ and 1/(y\—l) ( t i m e s  the u n t (~). For simp l icity, consider

then we have fl.. L/oC. Fi gu re 2 shows a graph of C as function

of fl. for  0~ I1
~~~.k 

, for different values of R.

a-

Fig .2 7 :.::
- 

—

Gra ph of O’ against Y’~. for O~ V’~~ 4~ when W = o.
(See section 2.4 for the explanation of these quantities.)

Putting O~~. O  in (2.24) gives Rz/r~. — I ; so the necessary and suffi-
cient condition for dynamo action is 

~~~~~~~~~~ - --~~~~~~~ — -~~~~~~~~-- - . - -  .
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This can be written as

from the definitions of I~ and .

Equation (2.27) is what we are looking for. Our aim is to compare it with

the crudel y derived necessary condition g iven in (2.19) . Since we are onl y con-

sidering C~~ ~ ~ , we see tha t they are consistent. Further , (2.19) is the

best possible condition of its type , because a condition of the form 14

where ~~~~ , is violated by taking t~ close enoug h to 1/2 . In this sense , (2.19)

is a ‘good ’ result abou t the solutions of the simple Equation (2.1)

Notes submitted by
John Chapman and
Francis J. Cond i
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Lectur e #3 CONSTRUCTIONS BASED ON SMOOTH I NG

3 .1 Introduction

In this lecture we shall discuss an asymptotic method for treating the

kinematic dynamo problem . In genera l there are at least three methods which have -
been used .

~i) Filtering method

(a) Tempora l filtering is based on the fact that the fluctuating magnetic

field decays much faster than the mean one. We are interested primarill y in the

mean field. The velocity field is turned on and off periodically. While the

veloc i ty is on , the magnetic field is created . Whi le it is off , the magnetic

field decays. Hence the turn-off time should be long enough to allow the un-

wanted fluctuating field to decay. For example , Tverskoy (1965) applied this 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~_:i
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method to prove dynamo action by a toroidal eddy in a solid conductor.

(b) Geometric filtering is based on the similar idea tha t certain har-

monic decay spatially faster than the others. Hence the harmonics wi l l  affec t

each other selectivel y according to the distance between sources (see for examp le

Herzenberg ’s two-sphere dynamo , 1957).

(ii ) Symmetry breaking

Cowling ’ s theorem (1933) does not allow stead y dynamos when both fields

are axiall y symmetric. This has been studied by Braginsky (1964 , 1965). In this

method the variables are divided into axi ally summetric and small asymmetric

parts.

(ii i )  Smoothing

This method is the main topic of this lecture. Here the variables are

assumed to consist of a spatiall y rapidl y vary ing part (small length scales =C )
and of a spatiall y slowly varying part (large length scales =

~~~~~
). An averag ing

process (e.g. over an intermediate scale) is essential to separate the mean field

from the fluctuating field. This idea has been initiated by Parker (1955) and

been exp lored since then by Steenbeck & Krause (1966) , Ch ildress (1967), G. 0.

Roberts (1970) , Moffatt (1970), and many others.

3.2 First—order smoothing

We start with the induction equation :

- ~~ -c7~(~~x B ) =  ~
where LA. = -s- u., and B 8~ t~ 13, . O~ and 13, are respective l y the smooth

-
- (large scale) parts of (..~. and 6 , while U., and 13, are their fluctuating (small

scale) parts. We define an averag ing operator K • . As we have noted , th is

mi ght be a spatial or tempora l average , but it might also have other meanings ,

e.g. ensemble averag ing .

Then by definition

‘ -~~
‘
>~~~~~~~6 ; <i ~!-,>~~~

0

</ 3~ >~ ~~~~~
. ; <L3~ > 0

Also to simplify the notation let us introduce the following operators

L~ -~~~~~~~~7~~-ç 7~ (~~~ x (.)) 
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J
“

- Y ~ 
(~~x C.)) 

-.

With these above defined operators the induction e.g. (3.1) can be - -

wr i t ten as:

~~ 3~~~Q (3.2)

By apply ing the averag ing procedure to (3.2) we get: 
- -

L~~~ -~’- 
< .~ 13~> 

(3.3)

where the terms <L 1 130’>and ~çLO 13 ’) are assumed to vanish due to the -
~

“smoot hness ” of L
0 

and

Subtracting (3.3) from (3.2) we get:

L,~S0 + L 0~~, - < L , 13 , > . _ L 1 J3 (3.4)

In the first-order smoothin g the ri ght-hand side of (3.4) is neglected .

Hence in this case we have (formall y)

— L:~ L, E3~ (3.5)

Then (3 .3) g ives - -

L0 Q0 —. (L , L; L’~~~o (3.6)

which is the equation determining S0 . Given the solution L3~ of (3.6) the
approx i mate (1 5t order) solution for the comp lete magnetic field is then

~ 130 — L0~~L30 (3.7) -

if (3.6) is simp ler than (3.2) we have gained something , and this seems like l y

since now the coefficients are smooth functions. Compared with L_
~

, 
~~

(3.6) has a new term on the ri ght-hand side , which is crL c ial for the dynamo action -

in those cases where ~~& 0 fails by itself to give dynamo action . -

To have a roug h idea of the physica l conditions under which this first

order smoothing is valid we assume 0 . Then (3.4) gives

_ _ _  - ? ‘~~ - VX ( ~ , x 
~~~ ~~ 

(~ 1~ ~1)-<~7x (~~ a,)>,

~‘(
‘L~JBj oO~

-
~~ ) ~ 

_ _ _  

(3.8)

where U) ~~ L)’are the character istic scales of . For the ri ght-hand side

to be neg lig ible compared to at least one of the first two terms on the left- [

-I

~ 

- - .
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hand side either 
~~ or tJ!/?j, has to be small compared to 1 . The first cond i-

tion does not involve the resistivity )j and tha t means that one must be care-

ful when using it. The second condition turns out to be sufficient when ~~~~ is

arbitrary and a ( s ) .  In what follows we use the magnetic Reynolds numbers R and

‘k based on .1 and ~~~~. respectively.

Als o, the mean equation (3.3) gives:

— 7
~~ BL, = ~~~~~~~~~~~~~~~~~ ( )

8 
_ _ _  

uB~o(-~~.) o( ~~~a0)

where C , T are the characteristic scales of 5 . In (3.8) the fact that the

last two terms on the left are comparable gives:

t;~~=. ~~~~~~~~~~~~~~

_ _ _ _so that the right-hand side of (3 .9) is of order which is comparable to

the terms on the left if ~-‘L. i2— > ) I since R = << I . Thu s the two scales

must be widely separated . This is equ i valent to say ing thatf O(R 1) 
. The

different scales can be p ictured in Fig.l. Also from (3.9) we have

(
~~~j

’ 
T= o(

I e ng t h —..-

Fi g. l

When U..0 # 0 the situation remains the same provided its magnetic Reynolds is

not too la rge, al though the determ i nation of L0
’ i s no t easy the n .

3.3 The ~ -effect

By the o< -effect (term i nology of Steenbeck & Krause , 1 966) we mean the
case in which the term X , in the mean fi el d equa t i on can be wri tten
in the form:

<(
~~~ i X Q,>~~~oc~~~e (3.10)

where ~~ is a constant. In the genera l case we have 
~~~~ ~~~ ‘ ~•where

oC is a pseudo-tensor. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We consider the periodic veloc i ty field in Cartesian coord i nates 
-

~~, : U(o, cos k x , s Lr ’  kx) (3,11)

To the first—order smoothing Eq. (3.4) g ives

~~~~~~~~~~~~~~~~~~~~~ 
=~~~x (~~~~ ~

)
~ ~~~ ~ç-~~ — ., .c ’80 (3.12)

In (3.12) we can neg l ec t the term LL,.Vff0 compared to • t7~ ., since
.cX~~~. Hence from (3 .11)

~ B0~ Uk (o 1 -5;~ kx~ c~~~K~). (3.13) 
-

After a time t such that ~. 

—

f-<< t< K T = -f --

the effect of initial transients disappears and (3.13) g ives -

— B~ -
~
%- (o~ ~~~~ J<.x , ~~ Ax)

we then have

<~&~ ~,>~~ (s0~ ~~~~~~~~~~~~~~ ~~~ -

where o o
I I

= 
~~~1 1 0 0 0

\ ~~~~~O

I f  8,, i s a u n i for m field in the X -d i rection , then the O( -effec t here

produces a mean induced current <c~.1 X ~~~~~ 
in the same direction as

8 
c~,,-e(fect

6o~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
A m pev e ’s lAW

But in this case there is no feedback upon so tha t L3~ would de—

cay away and no dynamo action is possible. Note here the important effec t of

phase shift. The flow deforms the field in just the right way to g ive a max- }
imum interaction between the perturbed field and the flow (see Fi g.2).

The he licit y of L.L., (terminology introduced by Moffatt , 1970) is defined

as H <u., . 12,> and is a measure of the knottedness of vortex lines;

in this case we obtain H —

—-

~

—

~

- —~~~~. ~~~~~~~ -~~~~-.—~~~.— ~~ — -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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.~~~
= LJ (o, co~ K x , .s in  ~c~~) ~~~~~~~~~~~ (o, _ s i n ~cx , cos

~~~~ ~ °‘~I~~(1 3o .,0, 0 )

Fi g.2

The motion tha t is next simplest is

= U (sin ~j Co5 Kx , $)V ~ Mx + c b5 i<~ ) (3.14)

Using (3.12) this gives

~ .!L (~~ Co~ - 
~~~ Kx s,’v~

and

x 
~ 

.. ~~~~~~~~ (u0,~, Sow , o) ~~i • _8o
or 

~~~/ i o o
~ ~~~~~

This model can cause dynamo action by the following interaction :

-

-

The cross arrows in the above diagram are ude to Ampere ’s law. This kind of
1.

interaction is called the o~ -effect.

To obtain 
(/00

0 1 0

~. 0 0 1
we can take

~~~~~(5/n k~~ .i-~~ o s k ~’, SIY lfr. +co~~
#cx si n /cx + c05k~) 

(3.15) 

—
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where H is the he l icity.

In al l of these examp les we have

~7X ~~ -ku..1
.

This kind of f i e l d  is ca l l ed  Bel t rami  ( ve loc i t y  is pa ra l l e l  to v o r t i c i t y ) .  In
genera l o rb i t s  of such a f low are known to be topolog ica l ly complicated .

_ give: by (3.14~ .

/ +: upwe l l i ng

~II~ ~~ (
\ç~: 

- :  down~-,e l 1 ing.

Fi g.4. Numerical computation

- 
- . (G.O.Roberts , 1972) of the

- - growth rate C~ as funct ion I
- 

\ \ of A and * for 14., given

\ \ \ by (3 .1 1+ ) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~
Fi gure 3 represents the stream line for X. and components of the velo-

city field LA 1 given by (3.14). The instabilitie s take the form of large scale

circularl y polarized stationar y waves with magnetic field components perpendicular

to the a x i s  of the “edd ies”. Fi gu r e  4 shows G.O .Roberts (1972) computa tion of
a
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the growth rate 
~~r as a funct ion ~f k and R for the same v e l o c i t y  f i e l d .

The g rowth rate increases to a maximum and then decreases as decreases.

Fi gure 5 shows the l a t t i c e  of s t r a i g ht particle paths (correcting stagnation

points)  for the three-dimensional  motion ( 3 . 1 5 ) .

B
7~~np

~~~~~A l

/

/V

Fi g. 5. An element of the orb i t  s t ructure of the motion (3 .15) .  A l l
labe led points are stagnat ion points , equ i valent under a rota-
tion and t r a ns ’ la t ion. A ’ll ‘l ines are pa r t i c l e  t ra jec to r ies  in
the ind icated d i rec t ion . Lines such as OP involve a divergence
( in the plane ABC) and a convergence (toward the plane DEE) .
Note the helicity evident in the structure .

Note that Fi g.4 bears a resemblance to Fog.2 of Lecture 2. It can

easily be seen that ~~ order smoothing is actuall y exact for the one—d i men-

siona l ana l og .

3.4 Periodic dynamos

In all three examp les in Sec . 3.3 the velocity fields u.. are stead y and

periodic in space. In genera l when u is periodic in space and time we expect

the magnetic field to incorporate the same pe riodicity in addition to large-

scale components (G.O.Roberts 1970 , 1972; Childress 1967 , 1970).

We now consider , for such periodic fields , some interesting points related

to “infin ite-order ” smoothing of the induction equations. Consider the modal

form 
~~~~~~~~~~~~~~~~~~ (3. 16)

W ith ~~, given to be periodic we can write the mean field Eq.(3.3) as:

________________ _  - - -
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where ~1 . (We show how is derived in the next lecture.) The matrix

A can be written in the form of a cumulant expansion

-~

in terms of cumulants of the veloc i ty field u..-~ . The have some nice sym-

metry properties and in particula r ~~~~- (0-, 0, R,t.t,)is rea l and symmetric or anti-

symmetric depending on whether j is even or odd. Also note tha t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
.

It is interesting to note that in order to have dynamo action it is suf-

ficient that det(A~~(O ,0, R ,i~.,)) be differen t from zero , since in this case two

ei genvalues of this matrix are of the same si gn ( O~ -e f f e c t ) .  This is true for
almos t all periodic motions (in a precise sense based on the represen tation of

the admissible tA. , as a Hilbert space , and the non-d ynamos as confined to a “lowe r

dimensional ” hypersurface in tha t space). Also , i~~~
(O,0

~
R1~~

., ) is ana l ytic in

R and thus if ~~~~~~~~ ~~~~~~~ such that det C~~~( O , O. o~~,))# 0 then det

(~A (o.o,R z.Li)~ 0for almost aR R.
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Notes submi t ted by
Ch r i s t op her L. Frenzen

and Pham Giem Cuong

Lecture ~~ MEAN-FIELD ELECTRODYNAMICS

4.1 Smoothing to all orders

Applied to the equations of magnetohy drod ynamics , the smoothing method

has come to be known as mean-field electrodynamics. As a theory it encompasses

not only the derivation of the mean-field equation but also the solving of the

mean—f ie ld  equation under condi t ions pert inent to the d ynamo problem . We ex-

amine these two aspects of the theory in this lecture , beginning with the gen-

e ra l  form of the mean-field equation .

As in the last lecture we let

L0 ~~~~~~~~~~~~~~~~ C’))
— v x (~~~ x ( ’ )

Using these , the dynamo problem can be w r i t t en

(L..0 -s. L,~ £3 0
We now define P as an averag ing or smoothing operator.

PC. )

We require only that P be a projection , i.e. that it satisf y

It is important to note that when u is small scale L0 1 L 1 may not be a “small”

operator on B even thoug h L0~~(L1 - PL 1) is “small” . (This has already been

used at the leve l of first-order smoothing.).

S i n c e

(L0 + L 1 )B = 0

we have ((L0 + L 1 - P(L 0 + L 1))B = 0

or CL0 — PL0) B = — (L 1 - PL 1 )B

We assume tha t P and L0 (or L0
1 ) commute , that is

4 
PL0 = L0P, PL0

1 = L0
1 P,

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~- -
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and that L produces onl y “roug h” field when applied to smooth:

PL , P = 0.

Commutation imp lies

(L0 - PL0)B = LO (B - PB) .

Letting PB = f equa l the mean field , then

L0 (B — ) = (L0 - PL O)B = - (Li — PL 1)B.

By i nverting L0, this can be rewritten as

B - f = -L0~ (L 1 - PL 1 )B = SB

where the operator S is

S = - L~~~ (L 1 - PL 1).

Hence

(I — s)B = f -

Li
If S is a small operator as claimed (the forma l smallness of S is implied by

the smallness of ~.1?.= %~ 
or ~~~~~~~~~ from the last lecture), we should be able to

write 8 =  (I—s) ~~ f .
The mean field equation now becomes

PL0B + PL 1 B =  L0f+  PL 1 B

which implies

L0f + PL 1 (I - s ) f  = 0. (4.1)

This is an exact equation for the mean field.

We can easil y rederive first order smoothing from this equation as

follows :

We have approx i matel y: (I - S)~~ ~~ I + S

Substituting into the mean field equati on , we get

L0f + PL1 (I + s)f = 0

or

0 = L0f + PL 1 (—L 0~ ft 1 — PL 1 ))f

= L0f - 
~L 1 L0

1 L 1 f (since PL 1 L0
1 PL 1 PL 1 PL0*1 = 0. F

Of course , one may also use the previou s method in which

We then again have F

~ 

- -
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This simp ler sequence of steps is all that need be considered if one stops at

f i r s t order .

The full mean-field equation has , however , a much richer structure . It

can be thoug ht of , at least when )
~ 

U.~ 
‘
rj ~~‘—‘ L~/(, is small , as containing a

double expansion , both in R and in the ratio -~‘/o~ of spatial scales. (A “slow ”

time derivative in the mean field equation is regarded as order and counts

in the ordering as equivalent to a double space derivative.) A symbolic repre-

sentation of the expansion goes as follows : First we write (upon expanding

(I — S)—
~ in (4.11)

L0~~+V ~~~~~L~~ ~ QL~ ():-P(~~~~~,
X S ~~~~~~~~~())

The operators L~ have dimensions of a speed U and an order of magnitude (after
/ .i — l ~~division by U) of 0~ R j. Moreover , it can be shown that L~ i nvolves onl y

the ~th order cumulant of u 1 .

Second , each L~ is , when expressed as a sum of a series of differential

operators , formall y of infinite order. We can then write

L~ 
~~ 

L~~

where

~~~~~~~~~~~~~~
In customary terminology L20 represents the ~~ -effect and L21 t u e ‘ ‘ ~‘~ —effe ct ’ ’

(when 
~o 

vanishes). The last effect thus accounts for large-scale gradients of

the mean field insofar as these affect mean induction . Because of the curl in

(4.2) we see tha t the /3 -effect involves second derivatives of the mean field ,

and hence the capacity to modif y the effective diffusion .

4.2 Examp les

1) As we saw in the previous lecture it is easy to compute for certain simple

mot i ons. For a progressive wave of the form

Li (0.. ~~~~~ , — ‘P ‘~~~ , ~ 
. k. X + LA)

we have , as the onl y non-zero entry in the pseudo-tensor

Il
_

Note tha t if ~~4 0 the effect vanishes in the limit ~~~~~~ (We consider the
a matter of small and zero resistivi ty below in an appendix) .

- -  ~~~~~~~~~~~~~~~~~~~ ~~~~~~
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2) Let IA = ~~~~ be periodic , solenoidal , and representable in the form
j(~~. x -.- -~ ,t )

-

k £ K , W 6

where 1< and ..~1. are suitable sets. As we noted prev i ously, the mean field

equation , if .1

~~~~x *c,-t)
f~~~f l e

has the form

The matrix A has the cumu lant expansion A .~5 ~~~~ , and if we write

/~\ a f  :o~ j-F3 ~~~~~~~~~~ .r O(r1 2 )

we obtain the o( and /3 effects with

~~~~
. • 

~~~~~~~~~~~~~ 

6lm~4~~~~j
~~~ L c ~) + r ~,1~.’.

/ _ _ _ _ _  — _ _ _ _ _ _

F ~‘~i ~~~~~~~~~ 
( j w + r ~h~ Y~

3) For stochastic t..i.. wi th energy spectrum tensor 
~~~~~

. . ( ~~u.) , expressions

for °~. and /3 can be obtained from those just g iven by the rep lacement

~~ M~~,u~~(.)—~ cc ~~~~~~

. . 
()d~~~~~~~~~~~~~~~

-

The expres~ ion for /3’ is equ i valent to tha t obtained by app l y ing first— order

smoothing to a mean field with constant gradient , up to a distant surface in-

tegra l in wave number vector space ; the latter wi l l  vanish for most physicall y

realizable flows .

4) An i mportan t generalization of the method allows t..i., to have , in addi t ion
to its basic small-scale featu res , a slow variation of structure . The computa-

tion of c’~. in the first-order theory treats such motions as if the slow varia-

tion of parameters were not there , so there is no special difficulty at tha t

level. A forma l stud y of this and other generalizations has been carried out by

Roberts and Soward (1975).

To take one example that will  be important later let

i-I

- —-~~
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If O~/h <SI this can also be written

~~~. ~~~~~~~~~~~~~~~~~~ V~) S,n  (iu i-o~ )i (0, y
~1.

.-, — ‘/2) sz ~n X —a.2 ) .f. O(&/ ~~) ..

Th us ‘.A. is approximatel y the sum of two nearby modes in *-space , each having

components in phase. The full spatial average of he l icity is , moreover , zero .

However , the two modes in comb i nation produce a non-trivial O~ -effect , g iven by

o’L11~~. ‘L ~~~~~~

4.3 Boundary-value prob l ems

We now examine several examples of boundary value problems arising in
mean field electrod ynamics.

Consider the boundary value p rob l em for the kineamtic oL.~ -dynamo in a

slab. This model relies solely on the ~~-effect; we take 4.,~~0 so tha t there
is no contribution from the 

~ ~ (u.ôxL ~)term .

The model is as follows :

S (13, (~~)t) , 0) , a two-dimensiona l field ,

and the o< matrix is taken to be 
/i ~

~~~~~~~~~~~~~ oj
\~o o o J

The dynamo equations become

_ _  - - _ _

at

213,. - ~ I3,
~

.t

Setting B 8, + I B~ , we have a comp lex equation

-
~

- - —
~ l~ ri- - ’  o~~~

(which compares closely with the model problem of lecture 2). We assume motion

to occur in a slab 0~ ~ 1.. , suppose both magnetic components to vanish else-

where , and therefore set 13 -
~~ 0 at ~ 0, L-. With ~ and ~‘~~o an

ei genparameter , we have the eigenfun ctions

5 =e~
t € _ ( l

~~ ~~~~~~ i]
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where

and :2n~~, ~~~an integer , provided tha t ~~~ ~~~~~~~ ~

For ti ~ 1 , R > 271 gives dynamo action . There are no oscillatory modes.

Induction regenerates the field by the ,,
0<

L ,, interaction :

~~ Fi g.

Consider now the same problem in a spherica l core. A number of these cases

have been studied by Steenbeck and Krause , and re-examined by Roberts (1972). The

case of constant c’< ...o
~c,
l can be solved explicitly and the minimum critical value

of L.k. (based on sphere radius) for steady dynamo action was found to be 4.49

corresponding to a vacuum di pole fie ld. For the cases where is odd with re-

spect to the equatorial p lane the critica l 1~ for di pole and quadrupole field x ,

while not identical , are so close as to make them for all practica l purposes in-

distinguishable. For example , with

the di pole ei genvalue is 10.09 and the quadrupo le ei genvalue 10.45. An exp lana-

tion of this coincidence has been given by Proctor (1977) , using a comparison

problem which exactly admits these degeneracies and appears to be close to the

realized structures.

We now consider the migra tory dynamo model of Parker (1955) . Consider an

infinite domain with mean field of form-, a,c~~~ ~~~ a A -~l x -I. I) 1~ + -
~j- 

l~~

where A and ~ are independent of y. A is a stream function for the poloida l

field while /3 is the torroidal field , we take
dc ,~i.i.~~~ = (o~~~ 

(
~

) , o) wi th 
d~~ 

= constant.

The equations are

~~?x ~~~ d~~ ~~ c.

.
~t (‘ ?X ’~

~

--- - - -—-- ..-- 



- -

- 35 -

Looking for modes proportiona l to e 1 *
~~~ we find

3 .. 1.

(6* ~ 
4~ ) 

~~~ 
-

~~

. 
~
. ~~~ 

where ~~
‘ -

~
j -— = constant.

I f  6 6’r + i ~6t ~, for neutral stability (6r 0 ) and o ,26~
’r? h~~ho~ ~~

‘

or °‘L so waves propagate in the direct ion of negative )< when ci(~~<0.

App lied to the surface of a fluid sphere , these waves suggest how the po loidal

field components mi grate across latitude lines under the combined influence of

microsca le motions and large-scale subsurface shear. This is particularl y in-

teresting because of the mi gration of sunspots to the solar equator.

These mi gratory waves illustrate wha t is known as the “ ~~~~~~~~
‘
~~
‘“ effec t.

When~~ << 1 and o(~~: 0(i) theo ’ic~~term in the dispersion relation may be ne-

glected , as may the ~< term in the equation for ~~~~~~~~~ . Simu l taneousl y .A .(< B,
and this is the mos t reasonable parameter range for the geodynamo . In this

li m i t , the “ cS—W” effec t looks like

Hg,2

~ 

I /~Io~irj S~~(~~ 
~ ~

u1L
~~ 1, ~W ~~~

~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

F i g . 3

~FieI rnd~ic~S

•

A number of°’~-J dynamos have been tried in a spher ica l core . For a

recent assessment see Roberts (1972); see also , De i nzer et .al . (1974), and

Roberts and Stix (1971). If one allows for some merid iona l flow in addition

to the differentia l rotation responsible for the (.‘~.) -effect , the fields have

the forms

~ 

--~~~ . - - - — - — --~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- --~ --- 



~~0 ;V ~~t (r,8 ) r  ~ ~~~~~~ p(r,e)r~ ~~= (rs~n9)~~~~

Since we are dealing with axially-symmetric fields there are two princ i p le pa r-

ities (components pa rallel or perpend i cular to the equatorial p lane)

di pole symmetry: B 11 odd , B1 even

quadrupole symmetry:B 11 even , B~ odd . j
Roberts (1972) examines a model of Steenbeck and Krause , J

0< Z ~~~ C05 9,

~~-~~‘0 r,F~ o.
As in the c.&~ cases the di pole and quanrupole critica l d~.. are qu i te close ,

there be i ng a slight preference for the quadrupole mode when and for

the dipole when t~
(
~ o’~ ~~O . In both cases the modes are oscillatory. Similar

results are obtained with other choices of ~~ and ~...4.) of the same basic parity,

although for some confi gu rations the preference for one of the symmetries becomes

more pronounced .

It is found that the oscillatory solutions exhibit a latera l mi gration of —

po loida l field structures , toward the equator if ~~ ~ U , thus suggesting

that the physical mechanism isolated by Parker plans an important role in the

oscillation.

For a model of Brag insk y incorporating both components of U.0 we have

t ~~L / - ~ (cc~ ~
)

p 
iO -rn r~ (1.— r )2 p ~~~~ t9)

..~~~~~~ - r~ (l- r)~ ~F1 (cos~~)— F~ (cos~~1)

Roberts finds that , in the range .52 ~ ~ - .012 the most easil y excited mode

is a steady di pole when o<.~ ~~ >~ 0 
, the smallest critical ~~ occurring when

m = - .3. If the si gn of c,.ç 5a,, is reversed , the quadrupole mode rep laces di pole ,

critical ) ov~dln~~
’s are again close , but the sign of m is changed . This sur-

prising symmetry property has recentl y been discussed by Proctor , (1978) and ex-

plained in terms of the proximity of solutions to those of a comparison problem

where the property holds exactl y. If we were to seek the model mos t relevant to

the earth , we would have to p ick this one , with ~~~~ ~~, positive in the northern
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hemisp here (to selec t the di pole mode). In the range of parameters studied the

most easily excited fields were stead y. In this reapect reversal phenomena are

not predicted and indeed the oscillatory kinematic d ynamos are probably mislead-

ing as models for reversals.

Notes submitted by
Chr is top her Frenzen
and Pham G. Cuong.
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Append ix

The o(-effect in the limi t

Stephen Childress

We record here some observations regarding the difficult and controver-

si al matter of app l y ing smoothing to perfect or near-perfect conductors. (A

discussion of the prob l em may be found in Moffatt ’ s book.)

Formall y, asymptotic smoothing was seen to be valid if ~~< I and

this condition is i ndependent of . This leads to the hope tha t rap id move-

ments , or a stochastic field with short correlation time , can be made to achieve

dynamo action in first-order smoothing even for vanishing resistivity.

One i mmediate point , if one reall y wants actual convergence of the mean-

field equation , is whether such convergence can ever be achieved for vanishing

3-7, . One ’s susp icions in this regard are confirmed by estimates on an appropriate

norm of the operator S considered above . It is not sufficient that U/~~ be

small , but is sufficient that L)2/c..,,
~ 

be small , the condition again i nvolving ~~~~~-

In fact the condition ~~~~~ is “onl y” asymptotic , with (j —9 ) having a

divtr9ent majorant series of the form

_ _ _ _ _ _ _ _ _ _ _
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.~~o ~~~~~~

when ~~~ = 0 . Of course mos t frequentl y this is a minor point , but in at least

one class of dynamos , rapidl y periodic in time and periodic in space , first-order

smoothing induces a secondary flow and a mean-field equation with an effective

magnetic Reynolds number ~~ . As this last pa rameter tends to infinity the

c~ -effec t is found to vanish (as in the stead y flows considered be l ow).

On the other hand , A l f v~n ’s twisting of a torus to amp lify the field (lec-

ture #1) is a tempting mechanism and may work for sufficiently small resistivity.

By its very nature , however , this process cannot be accessible to modeling by

asymptotic first-order smoothing, since mean and perturbationa l fields are compara-

ble during the twisting process. One possibility then , is tha t there are diffi-

culties to smoothing a perfectly conducting dynamo . In addition , it is not i mme-

diately clear what unnatura l zero resistivity phenomena mi ght be introduced by Jensemble averag ing over admissible motions , if the latter contain singularities

capable of severing and reconnecting lines of force.

Act uall y little is known abou t the limit of small even in the case of

induction by stead y spatially-periodic flows . G .O .Roberts ’ numerical results

(see lecture #3) included some values of ~ out to R 64 and these can be com-

pared with calculations based on boundary-layer theory. The latter makes strong

use of symmetry and evaluates ~~~. once flux is concentrated near the boundaries

of cells , It is found that ~ as ,
~~ ~~~ where the constant ob-

ta i ned produces rough agreement with Roberts ’ values. It may be conjectures that

this ordering persists for any stead y motion independent of one coord i nate.

For three—d i mensional steady spatiall y-periodic motions one expects concen-

tration of flux into tubes and possibly also sheets. The former can be shown

(using the asymptotics described elsewhere by Proctor) to produce an ~<-effec t

nominall y 0 (h .”R
’l , but at the present time there are no worked-ou t examples to

support this estimate. 

- -
~~~~~~~~~

- -
~~~ 
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Lecture ~5 ALMOST SYMMETRI C DY NAMOS

5 .1 Grag in s k i i ’ s (1964) solution to the kinemati c d ynamo prob l em

Consider the dimensionless equation

with 7.9;  0 and R —
~~

-
~~~ in the lim i t  R —* — . The time scale of the field

has been taken as the diffusive time scale t = time

It is known from Cowling ’ s theorem tha t axisymme tric fields cannot main-

tain a dynamo . Brag ins k i i ’ s idea was that fields whi ch were close to axisym-

metric mi ght be able to maintain a dynamo for sufficientl y large P~. He assumed

t o ( a )

U. ~~~~~~~~~~ t ~~~~~~~~
His analysis then investigates whether the small additiona l . o (l) components of

u can act with W to create a kinematic d ynamo such that B can be m aintained or
amplified . Braginskii soug ht a symmetric “mean-field” equation. An averag ing
operator P is defined to be averag ing over , so if

_ vz~~~ 
+ .4.

then \

P~~ (
~ J v~d~ )~~ ~ V? d cv,) 1 e

+

A velocity field is postulated of the form exemp lified by

Wt~., p)L~ R~~VA (~ 
(a , ~o) ~

,) R’~
’
~ t..~ ”(z ,f, ~)

with p~(i) .. o.

The results following from this choice can then be viewed as a special asymp-

totic version of 1st order smoothing .

It is found that a self-consistent expansion of B takes the form

t~~~ 
¶R~~

It 
~~~~~~ ~~~~~~~~~~~~~~~ i. o (R ~~~~~) ,

a 
0 1 , 2, 4. 
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The mean field equations obtained from these fields can be written in a form

almost identical to those obtained for an axisymmetric o< o., dynamo from 1st

order smoothing . Given A , u ‘ effective ” variables are defined

A~ç A -~~’19

~1~+ ~~~~~~~~ -~
‘e~ c c7

~~

where

w 2. -

and
A . /~ ~~~~~~~ 

A(
~ ~~~~~~~~~~~~~ 

LLp,J c ~ + ~~ -~-LL~~J 1-q
~ 

(A.’

Then , in the li m i t  R—~~o, the equations are

P ~~~~~~~~~~~~~~~ ~~)A eçf + 
~~

~~- *p~~ec~~Vç~~) ~~~~~~~~~~~~~~~~~~~~~~~~

~ i) ~ awhere o~ Cz .p) is quadratic ii t~. R .

These equations are precisely the same as those of an axisymmetric dynamo , with

the exception tha t the equation for B would also contain the term J
(~~~~ A~~~~~~ (V A ~~~~~~~~~~ ))

on the ri ght-hand side. The absence of this term in Brag inskii’ s formalism means }
that he can onl y obtain ~ ci dynamo s (and tha t c’~

2’ d ynamos are not obta i nable ,

except possibl y throug h hi gher-order calculations).

Since it can be shown tha t the same boundary conditions appl y to the ef-

fective variables in the boundary value problem , we have two independent asymp-

totic theories which produce the same “smooth” mathematica l problem. However ,

Braginskii’ s method has the advantage that there is no assumption abou t length

scales associated with ~~~~~~ Instead is chosen to be sli ghtl y asymmetric

and the singular limit R— >c,o is used to make possible the expansion of the non-

axisymetric component of B.

The emergence of the effective variables is startling and led Sowa rd to

reinterpret Brag inskii’ s work by considering it to be an instance of “diffusive

modification ” of the kinematics of an essentiall y perfect conductor. This point

of view is useful here because the perfect fluid kinematics are close to a sim-

ple form , because the fields are almost axially symmetric.

ii-

~
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5 .2 Sowa rd’ s pull-back method

The idea of this method is to exp lain the form of Braginskii’ s equations

by using a transformation property of the perfect conductor.

We are interested in motions close to simple ones , e.g.

1) almost 2-0 motions

_ _ _

~~~~~~~~~~~~

-back 
_ _ _

///
The pull—back maps R to R and straightens out the “wiggles ”.

2) almost 3-D motions .‘

~~~~~~~~~~
back (~~~~~~~~

In order to erase the “wiggles ” at a given instant we can imagine a smooth vol-

ume-preserving map of space into itself , which we write as

~

We want to see the effect of such a transformation on the equations for

a moving perfect conductor. Let fields 13 (2~ , t ) ,  E ( it ), ~ (~~~,t) be
g iven as solutions of

—
~~~

-
~-id~~A 8  ~~ O

-

E~
Then 4-~

-
~ ~~ ,t (iz ,~ ~).

The Lagrangian form of this equation is 

---—--

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~~~ --.~~~ .--~~~~~~~~~~~-~~~~~-—  
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This equation can easil y be transformed using the transformation 9 and we find

J~ ~~~~~~~~~ ~
O

where

j3~ (~~~t ) :  ~~~~~~~~~~~~
Hence

/ ,,
~ ‘

where
,~~~ .~~~~tl  - -‘- LA.-

~~~~~~~ ~~~~~~~~~~~~ 
~~
- \  a -  ~~~~. ~

We can now find ~~~xt) since E — 
~~~

- L3 . Using the fact that is volume

preserving , so
I- ~D ‘

~~~~~~~ ~~~~~~~~ - 6
~~~~ ~~ - r  

-

Then ~~~~~~~~~~~~~~~~~~~~~~~
So we see the equations are invariant under the transformation of 

~~~, ~~ , ~~~,

into ~~~~~~~~~~~~~

However , if we have chosen as -3 ~u 1l -back to symrnt~t I ic Fl o~ , we can

average along the direction of symmetry (z for 2-D , 4~’ 
for 3-D). So

since the equation is linear in B and since P u =  0 as U is symmetric.

We now claim we may identif y u w i t h  
~~~~ 

and PB with 
~~~ 

of Brag inskii’ s

dynamo . This is particularly easy to argue if Ti is a stead y motion and all stream-

lines are unlinked closed curves , since it is p lausible that in this case that

the necessary mapp ing , ~ , can be found. In general the method hinges on the

existence of a smooth ‘3i , and it is not obvious when it exists. All U for wh ich

the method works can , of course , be obtained by smooth transformations , ~~
‘ of J

symmetric flows u. Since Braginskii’ s equations are asymptotic for R—~’~’ ,

the pull-back need onl y have certain asymptotic properties (e.g. near closure of

orbits).

Having examined how the perfec t conductor equations transform , we now
a 

wish to see how the exact equations transform. One finds ,

i-I



.w- ‘ —
~~~ -:~._

_:
~..i:~ ~~~T i ~~~~ _.T- - --- - 

- 
. 

- :1

- 43 -

—
~

— _ 2
~

:7 
~~~~~~~~~~~~~

where

6 O < LJ B. ÷
~~~~

( .
~~

)
6

,~ : = ~ ‘ ‘~

~~~~ ~~~ .
~~~~~ Q~

_
5_?, I?1

It can be shown for choices of ~ 4 appropriate to Brag inskii’ s special

choice of velocity field (O(R~~
”2) axisymmetric part etc.) that the term

is neg li gible and that the equations obta ined already, by Brag inskii’ s method ,

can be rederived .

Notes submitted by
Judith V. Holyer
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Lecture #6 CONVECTIVE DYNAMOS: Genera l Princip les

We turn now to the full magnetohyd rodynamic dynamo problem , and in pa r-

ticular the convection driven model , which may be diagrammed as follows :

c4~ rotation?

kinematic induction

ve/oeit
~,F,

’efa
~ < magneto convection

hea t f l ux

Fi g .1

The most relevant problem - the convective MHD dynamo in a rotating spher-

ica l annulus - is qu i te formidable , and has not been in any sense “sol ved ”. On

the other hand , one mi ght argue for the existence of solutions as follows ;

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



- 44 -

4
(1.) Show that nonmagnetic (B = 0) solutions are unstable to the addition

of field , i.e. infinitesima l magnetic fields are amplified . (In this case , in

the weak-field theory, the kinematic induction uncoup les from the dynamics.)

(2.) Show that the magnetic field energy is necessaril y bounded .

Given that the dynamo is being driven by app l ying energy at a fixed rate ,

the latter point is very plausible. Today we shall see how it goes for a con-

vective d ynamo , driven by hea t sou rces.

We use the term “convective ” to mean there is some scalar field (e.g.

temperature), affecting the fluid density, which can itself be advected and dif-

fused (one nontherma l process , suggested by Bra g inskii , involves the floating up

of li ght elements released during the growth by accretion of the inner core).

There is no rea l concensus concerning the energy ~,ou rce for the geod ynamo , but

we feel that convection , (therma l or nonthermal), is as plausible as any of the

other proposed mechanisms (e.g. core turbulence driven by precession , or ba ro-

clinic instability analogous to that in the atmosphere) . Moreover it rests on a

well-understood process , so that various models can be formulated rather easil y.

A profound (and controversial) criticism of the therma l convection model

has been put forward by Hi gg ins and Kenned y (1971 , 1973). They propose tha t the

core is , for the most part , stabl y stratified (their second paper says that a

convecting reg ion may exist within 500 km of the inner (solid) core) . Their

argument is that the adiabatic gradient is shallowe r than the melting point

gradient. Assuming that the mantle/core and core/inner core boundaries are melt-

ing-point transitions , they argue that the temperature profile must follow the

melting point curve: greater temperatures would lead to melting of some of the

solid core , l ower temperature would tend to solidif y some of the li quid core.

To compute the adiabatic gradient we have ~~ ~--p~~
.
~- for L radius of core~

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~d~~~ c L
The melting-point gradient was obtained by extrapolation of shock-tube data for

melting temperature vs pressure.

For convection , the temperature profile must increase (with depth) faster

than the adiabatic increase ,

3T ~~~~ ~> C~~L

~

-

~

---- -_ -~~~~~~~~~~~~~~~~~~~~~~~~~
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~
,f OOO

~~~~~ ~~~~~~~~~~~~ p~
)
~t ~r4 die_?~t~

~~ oc_

6o~.tndar~

- 5ra41’e?71
- ~‘~-cbre/J’vl~~r core

~

OOOT

Fi g.2

W itho< , T, C~ as in Table 1 (Lecture l ),~~ ~~ 
5~ri , ’5Q ~~~ , we get

_( dT~ 2 x i o ~~’I~~‘~. ?rJ ~~
Assuming all heat sou rces are in the core (qu i te unlike l y), and tha t the radial

gradient at the core/mantle boundary is g iven by the last fi gu re , we get a surface

heat flux of approximatel y 6 x l0~~ ca l /m2s. If we assume the Kenned y-Higg ins

melting-point curve , we obtain 4 x lO~~ cal/m
2s. Both va l ues are considerabl y

be l ow the observed flux of 1.5 x 10 -2 cal/m 2s.

Another basic criticism of a therma l model of convection has been g iven

by Brag inskii (1964), which lead him to his proposal of a geochemical mechanism.

Treating the therma l d ynamo as a heat eng ine with optima l efficiency ’ 
j 0

z~~~~~

actual efficiency perhaps 
~~~ 

, the work done in sustaining the field (most of

which appears as Joule heating) is abou t -

~~~~

-

~ 

of the net core heating (presumabl y

by radioactive decay). Assuming 1/5 of the 10 15 joule/sec heat flux at the sur-

face is created in the core , Joule heating should amount to 2 x 10 10 joules/sec .

Suggested values for Joule heating have ranged from 4 x lO~ to 4 x 10 12 joules/sec ;

Bra g inskii favored the latter , hi gher fi gure , based on a kinematic dynamo model

of his.

Both of the above objections (popularly known as “core paradoxes ”) are

themselves subject to criticism; in what follows , we treat convection explicitl y

as thermal.

Our equations now become (in a rotatin frame)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ T+ c7. ~ ~
, (6.1)

_

~

- - .-

~ 

-~~~~~~~~~~~ - - -- -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~
------.- -
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where F includes all gravitationa l forces and ‘T[.~ i s  the viscou s stress tensor;

?~°

,o Cp Al ~~~~~~~~~T4 t c J ’3 + Q~ourc~rQ,c +ojou ie , (6. 2)

~ d ~~‘=A.VT,where °~ ~~~~~~~~~~~~ 
is~ 

-

~~~~~

—

~ 

‘ 
~ -3- T ’ am

the therma l diffusivity.

We assume u = 0 on S, the boundary of the sphere which is our domain ,
-~ —,

and that T = T5 is constant on S. Setting F ‘7~P wnd tV + -.~ js_ ~ r
taking the dot product with the momentum equation g ives

~~—j ’ (4
~ 

+ ~p ) +. v.  (p 
L~ (

~~ 
÷ + -;-))

..., ~~~~

p V.~~~~~
-

~~~~~~~
(13A~~~

)- ~ .v ,p u . (f L r ) .~-,p — . (6.3)

Integrating over the core , -.~ 
.
~~

*(E~~E~
) ~~~~ w~— ~ — L.(BA J)~~ , (6. 4)

~..vssc .1
whe re Ek, Ep are kinetic and potential energy g iven by ~~~~~~~~~~
respectively, the compressional work W~ JPV .tLdvo l and the precessiona l

(and tidal) work ( (
~Q -~Wp 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Recall , from the kinematic dynamo problem ,

~A. L’~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
(6.5 )

- 
‘ whe re Em is the magnetic energy . Putting this together with the previous

equation gives
a-~~~(Em+E,~+Ep’)~ ~~~~~~ ~~ (6.6)

Introduce entropy , s and interna l energy density e, we rewrite the tem-

perature equation as

P j~— - -~- -
~~
-

~~~~~~
-
~~

-
~~
-pT~~ ~~ P 

~ (pe)+~~.(fea).~-p V u~

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 07i,uI~. 
(6.7 )

Again we integrate , and get .1
* ~~_j Pedvo~ - 

~‘C
’
~ ~~~~~ ~~~Jl r1C~~~~~

.V ,?t + ~~~~, (6.8)
a -

_ _ _ _ _ _ _ _ _ _ _ _ _  - _ - - - - - - . ----~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - -—~~~~~~ - - -  - - -
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so i f E E L p +~~k~
+ 1
. 

~~~~ (6.9)
— $~~~V C~ )s

Denote time average by an overbar , and assume the system is near equilibrium.

Then

~~~~ +W ~ ~~~~~~ ~~~~~ (6.10)
r ~~~ .~ & 

- — —

- I  ~p.r~ cLS ~~~~~~~~~~~~ ,our~g.Js
We can consequently sketch the system as a heat engine driving a kinemat ic

dynamo .
su~Mce

Lr~e
IL ~~~

$ OIL
~vCt

Fig .3

Of course , there is but a sing le earth , and so the two must be superim-

posed , as they consist of the same fluid pa rticles.

We want to show tha t + is bounded in terms of

The idea is tha t parcels V; of fluid deep in the core absorb heat °)....,~ at tem-

perature T~ , and give it up at the surface at temperature T~ ; entropy increases ,

~~~~~~~~~~~ 
...&i. . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

Ti

so + ~~ + 
~~ 3O~~i~ ~~ 

~~~ ~~~.. and 
~~~~~~~~~ ~~~~~~~~~~ ~ ~~~~ 

i) ~~~~,
. Th i s

‘1~3

sti ll i nvo l ves the unknown Tma x ,  however , For further discussion , see M a l k us
(1973), Hew itt et al (1975), and Backus (1975).

THE BOUSSINESQ APPROX I MAT I ON

We assume at the start tha t St. = constant.

We then trea t the density p as a constant 4 , EXCEPT in the body force

I ap’termp 1 _P~~ tV Jo (L
_
~~5T~! 

where L = radius of earth and

he effec t of densi ty fluctuations on the grav i tationa l potential is also ignored .

We a lso  neg lec t , in the temperature equation , the terms ~~~~~~~~~~ ~..3~~1 and

~~~~~ The equations (6.1) - (6.2 ) then become
4

- — - _ - - - - - --_--- - ---- .-- - —  
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4i.4. ‘

~• ~~~- .Lp0 S~ ~~~~~~ 1÷ ~7 
~ (6.1’)

F)
v .a. ::O ,

and
?~ 7 2 T Q  (6.2’)

These assumptions requ i re that the thickness of the convecting reg ion , L ,

for the earth , onebe much less than the “temperature scale hei ght ”, LT

obtains L = 2 x lO 6m~ 
LT = 2 x l O 7m~ 

so this is not too bad . This condition

arises from the suppos ition tha t buoyancy and magnetic (Lorentz) terms are com-

parable , the Q~ much smaller.0

A remark: in the Boussinesq approx i mation , if all time-averaged qua ntities

are independent of ini t i a l  conditions , then the mean tota l helicity must vanish.

One sets the initia l conditions alternately to ~~~~~~~~~ 13, )  (j~ ~~~

~~~~ B0 (~~’i) , for some g iven functions . Pa ,1 and 8~, and to

&) ~ (~~0 (-r) ,pe (r), T0 -5~~, L30 (—~~).
Then ~~~~~~~~~~ ~~~

-‘°‘ —j
~~ ~~~~~~~~~~

since we assumed H 1 = H2, we conclude tha t they must be zero.

We now consider a bound on magnetic energy in the Boussinesq limit. One

can show (see the appendix) that 
~~~v i5~~ ~

3A~~1 
_ _ _ _  _ _ ______ ~ ~~~ \+~~~/~~JrJ cr)

t
Q (r

1
)dr~~~r , (6.11)

L~ 
ii L — _____ ____

where,~~~~— K < 1 a n d  
Q (r)

~~<Q s)r ,< (•)>). denoting the mean over a spherical she ll

of radius r , and Q5 = 

~sou rce ’ The first term vanishes if Q5 is constant, so

~,sc ~~ 
— Lj 

~~~ ~ —.—-~~ ,

We now use (cf. Lecture 2) ~ “ \
~~~~~~ U~~L~ )B dV0~’ and setjl?dyOj:J30

2_
VOJ,

the Hartma n number asdefine the Ray lei gh number ~s ~~~ ~
in which case one obtains ~~~~~~~~ ~ 

5~17~~ 5’O.
/~~

(Our standard values (Lecture #1) g ive ~~~ ~ 190 for fields of 100 G.)

Thus in the Boussinesq case , the field must be bounded (“most of the small-scale 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J
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stuff is wiped out , so onl y abou t 1/10 of the oC -effect remains ”). This bound

was obtained (using a somewha t different argument) by Hewitt et al . (1975).

Notes submitted by

David C.W.Hart
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Appendix (Stephen Childress)

To obtain (6.11), first multipl y (6.2’) by T-T5, integrate over V and

average over time . After use of Gauss ’ theorem and the constancy of T5 we

obtain 
- - 

________

~~
f
~~~ T)~~~~ol ç Q ~ (T- T~) d v o I

and therefore
T~ ~~~~ ~

We wil l  use this relation presently. Now define

where j i
(- )dci.reci.

is the sp herica l mean at radius r0. The spherical mean of (6.2’) gives , after

integrating once with respect to v , — —

p r ~ - A r ~ S ~ ~ Q (f ) ~~
But in the present case

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
t ’

~4 3~ -’~ e /‘~~CC’ L1i
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and so, now using

~flL~~ -3 )~Tdvo /

~ ~T~L
’
~~~- ~~~~~~~~~~~~

--- 
(Q 5 T~ vol)

4 1 j -I L’T — _ _ _ _

$ (p~
~~~ ~~~~~

~-,here the maximum is over space and time .

Combining these results , we have (recall j3 = ~~~ L~~y/
’c~,)

< 2 L ~~ ; - ~- -nL~-- 
2 SOU vGC. JV ,~~~

_’_.~ ~~~~ L ~

which is (6.11).

Lecture 117 ROTAT I NG MAGNETO C O N V E C T I O N

Now we consider the effect of putting in heat to support a magnetic

field and a convective veloc i ty Field. There are two aspects of the comp l ete

dynamical problem that we will  consider. 1) The kinematic prob l em of genera-

ting a magnetic field From the free convective mot i on of the fluid and 2) the

effect of an i mposed uniform magnetic field on the fluid motion .

First we examine the B~nard convection prob l em , i.e. a rotating l ay er of
fluid heated from be l ow, in a uniform gravi tational field , (c.f. S.Chandrasekhar

• “Hydrodynamic and Hydromagnetic Stability ” Chap.3). Our interest from the point

of view of dynamo theory is the structure of the realized modes of convection .

We make the Boussinesq assumption that density changes are i mportant only in the

buoyancy term and inertial effects are neg ligible. Also we linearize the equa-

tions of motion which eliminates the advective nonlinearity of the substantial

derivative .

I A denotes unit vector

~~~
-
~~~~~~~ -l (~~T’ ~~

)

In the tempe rature we subtract out the in i t i a l l y imposed linear gradient: 
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The momentum equation is:

U- r~~ ~~~~ ) ‘~~~L J -  ~~ 9~~ V .~~ ~~
and temperature equation :

~~~~

We app l y “sli ppery ” boundary conditions: & ~~~~ at ~ ~ L for

isotherma l bounding surfaces.

Keller: In elasticity theory these boundary conditions are termed a

“greased surface ”.

Ma l kus: This is achieved experimentall y at Ra~~~64O with silicone oil

bounded by mercury below and hel ium above both of which are good

conductors.

We wil l  obtain asymptotic results which in any case are relative l y insensitive

to choice of boundary conditions.
A

To put the equations in more tractable Form app l y ~ •VX and ~~ VA (t7~ to

the momentum equation and let ,~ ~(v~i5)~ , the vertica l component of vorticity,

obtaining (extemporaneousl y)

~~~ - 2f ~~~~~~VV~~ 
-~~~~ ~~~~~~~~~~~~ 4~ ]

_ V’ ÷~~V
’
~W—2 ~~~~~~~~ ,3°~ ~

t
e

Sp iegel: “That deserves a round of app lause . . . even the si gns are ri ght ”.

Chi ldress: ‘‘Is that ri ght?’’

Sp i egel: “How should 1 know?”

~ may be eliminated between the two equations , multipl y ing the first by

the second by~~-~~- ~~V
t
) and adding. This result and temperature equa-

tion are nondimensiona lized with the following scales:

length .— L Ray lei gh number Ra. ) K
time .—

~~ -~y (typica l vertica l diffusion time )

~1~ _____Tay lor numbe r Ic~ ~ (measures effects of rotation relative to
viscosity)

Also note ‘To~~ A~ ( U. I~’,)~ ~~~ 
(E = Ekma n number), and

fina l l y ¶
~~2 ~~~~~~

- 

~~ ~. . Note the Tay lor number for the Earth using

L — 3 x 106 .fl= 7.4 x lO~
’
~ V - l O 6 (MK S ) is ‘ ‘- 1.8 x lO 30fl

1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _  _ _
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in fina l form :

for which there is a class of solutions with
.~~ —~ o.

~~ -~~~~-~w = sir, (r ja )co5( !<s)~)e ‘)~ 1 ,1, . 
~~~~~~~ in p lane J.,~~ )

where the wave vector (k~ , ky. n) s a t i s f i e s  the relation
).~~

3 .~ .. 1i
1 flt )

3 

+ iT3 nt T ~- for neutra l s t a b i l i t y

Proctor: This is for Pr I ~
Chi ldress: Assume F’r~~ .é ’ .’J. This insures exchange of stability at

large Ta. 
j

We are concerned with the onset of instability for ~ crossing through zero , in

the limit Ta ~~~~~~~~~~~~~~~~~~ Qualitativel y the relation above may be sketched as

R0~

Clearly (Ra)mi n is achieved for n = 1 , but for what value of k? (as Ta ~ ~~O ) .

If we assume that k —‘-1 , then Ra .~~ Ta. But if k ~~~7 1 , then Ra~~ k
4 +

Taking ~~~~~ for a minimum y ields ,
\ ‘C.‘. fit 1-~~ ~. i~ ..- i1~ L L T

— 

~~~ 
(a.) —/ “~ 

- 3 ~~

(which is smaller tha n the estimate from the k — 1 ana l ysis. From the point of

view of dynamo theory this is nice , for a fast enough spin the convection modes r
have bery large horizonta l wave number , i.e. small spatial extent -~~~ . Thus

4-~’( h t T4)
<< i a- s 

T~~.
— . 

~~~~~~~~
.

The appearance of this new scale in the problem may be thoug ht of as aris-

ing from strong Corio l i s forces which cause a large orthogona l deflection in the

trajectory of a particle ini t i a l l y moving horizontally, l ead i ng to thin vertical

convection cells.

Ma l kus: Veronis found as Ta ~~~~~~~~~~~~ and kc gets larger the actual particle

trajectory in a roll is the same as for Ta”~’l
, just tilted . The balance is feo-

strop hic. [
Stern: Think of a top , the rotation stabilizes the motion even though it

-
~~~

- -- - -.  -~~~- --- -•- -~~~~ ---~~~~~~~~-- -- - - -.- - -~~~--~~~ ~~~- - ,-~~~ - - - • -_ - •- -“
~~~~~~~~~~~~~~ -- . - -- -
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is top-heavy. The onl y thing that makes it fall is friction as in this case ,

small cells are formed in which frictiona l forces offset centrifuga l forces.

Ma l kus: Yes , but the viscosity destabilizes the flow .

Sp i egel: The point is , why is kc large? Viscosity kil l s  large wave
numbers.

Ma l kus: Suppose you increase the heat flux , what happens to /
~~
T
~
? How

does it depend on ~) ? ~~~ 
goes to infinity as viscosity goes

to zero ( The k4 is a viscous term.

Sp iegel: The inviscid problem has a critica l wave numbe r such tha t all

smaller wave numbers are stable and which tends to infinity for

infinite rotation rate .

Chi ldress: Perhaps the term to focus on is , where we see a ba l-

ance of buoyancy in the numerator with vertical forcing in the

denominator , i.e. not a geostrop hic balance to l owest order.

Now we consider the velocity field of a roll.

(L

b~QL-~k
—~ -~ ,. • /% A • .~ 

. • ..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that the first two components , vertical and perpendicular to the p lane of
- the page , are 0(1) quantities while the last component which makes u~ divergence

free is O(Ta
_ h/ ’6 ). We expec t from examp les already stud i ed that the —f phase

lag between the first two components should lead to regeneration . The pressure

of a small scale ~ justified first order smoothing and we find the dyad

‘~~~

Proctor: This is for fixed r1~,

We can add any number of rolls with the same kc but at different ang les ,

e.g. a hexagona l or square arrangement l eading to a matrix of the form:

/ o
~ ,l oL 1~, Q

I ~~~ O

0 0 )

______________________________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- - -—.--~~~~—
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with a positive definite uppe r block. A mean current in the plane suggests an

o~~ d ynamo is possible in princ i ple , having a periodic repeated cell struc ture .

Althoug h the net helicity 5(~~.~~ x L J) ~~ ( V o t)  is zero , there is a “polarization of

helicity by rotation ” with respect to the mid p lane :

We can produce a dynamo with large scale magnetic field by slow (horizontal)

modulation of ~~~~~~
.

Stern: Are there modes which aren ’ t dynamos?

Childress: The onl y case which would not be a d ynamo would be a degen-

erate matr ix , e.g. one roll alone (
~~ diagona l with one nonvanishing element).

-.)

Pedlosk y: Wh y isn ’ t this realistic , tha t is , does B have to develop?

Chi ldress: This is a hig h l y degenerate plane problem , in a sphere one

can ’ t arbitraril y combine rolls , for example you mig ht have an ~ -effec t , but

no ~
(

Proctor: According to Sowa rd with two or three rolls you can have a field

with Ra smaller than the critical value , here.

Chi ldress: Actuall y the problem is even worse as there is go l ba l subcriti-

cal instability as opposed to just l ocal.

Proctor: A smaller value of Rac for two rolls with a field suggests the

onl y possible mode is a dynamo .

Malkus: Roberts following Chandrasekhar suggests that “gyroscop ic con-

straints are stabilizing ’’ which is widel y accepted . It is interesting here that

the two constraints oppose each other , relaxing the conditions for instabi l iry.

Now we add a uniform imposed magnetic field following Eltayeb and Roberts ,

and examine the asymptotic dependence of Rac and kc on Ta.

fl~~~~~~~~

,M—9 (T~’) (Hartma n number) 
M

Horizonta l field Vertical field

- - -  • -~~- • ~~~~~~~~~ _ _ _ _  _ _ _ _ _
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The minimum Rac 
in both cases is for M2 — Ta~~

2 in the intermediate mag-

netic field reg ion where magnetic and rotational constraints come closest to can-

ceIling . In the weak field reg ime , not surprising l y, rotation dominates and the

exponents are those found earlier , while for strong fields , horizontal and verti-

cal (cf. J .Pedlosky on ‘‘Inviscid Stabilization ’’) , results differ markedl y.

Sp i egel: There is a di p for the vertica l field?

Childress: Remember , the vertical field responds to both horizontal mo-

tions.

Note that the ratio 
~~~~

-

~~~~

- is independent of viscosity and putting in the

numbers for the earth , the ratio is — 16.

Proctor: puts one out in the hig h field regime where the in-

stability is a diffusive one.

Knobloch: For no field , Ra — Ta2”3 , and with a strong (horizontal) field

Ra - Ta
1
~
2 ?

Chi ldress: Yes , and notice that the change in exponent of Ta~~
6 now means

-.~~~~-— ~~~ for the earth wh i ch would i nvalidate the mean field equation and

O( -effect.

Malkus: In a spherical geometry , thoug h , the constraints mig ht lead to an

optima l k such that ~~~~-- ~~~~~ Radius.

For a sphere the prob l em is comp licated considerably. Busse and Roberts used

linear stability theory to obtain asymptotic resul ts for Ta
__
~~~

c . The convec-

tive mode for a sphericall y symmetric gravitationa l field consists of slender

rolls oriented along the rotation axis which propagate eastward , this being one

of the consequences of a loss of a geos t rophic balance .

There is an expanded radial structure and a rap id azimutha l variation ;

thus one neg lects ? derivatives relative to 9~ 
derivatives obtaining an equa-

tion in ~ and z which reduces to an ei genva l ue prob l em in z with the assumption
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of a mode e’’~”~. The loss of radial dependence leads to an infinitel y degener-

ate class of modes. Soward did a multi p le scale anal ysis supposing Ra~~ R~ and

found a radia l dependence of 0 and thus of the wave apeed . If one does an in-

itial value problem , eventuall y viscos i ty ki l l s  the mode.

Spiegel: Perhaps the time involved is too great in the context of other

approx i ma t ions.

Soward emp l oyed nonlinear stability theory and was able to resolve the

structure on a long time scale for
1-~~ R~

There is a comp licated radial structure on slow space (Ta ’
~ ) and long time scale

resulting in a Stewart-Robertson type evolution equation . Heat is transferred

radiall y by a soliton-like structure (rathe r than the laminar flow of a conven-

tional cell) of dimension Ta ”. In Busse ’s experimenta l appa ratus one would ex-
-

pect Ta “-‘ 1 , thus his observation of convection cells propagating eastward is

not in conflict with Sowa rd ’ s asymptotic results. (Also , the gravitational

field is cy lindrical not radial.)

Eltayeb and Kuma r considered the effec t of a magnetic field
-

~ (x ’~. *.) ‘12. ~B~~L3.
in a sphere , obtaining the following results:

( )  ~r _
_ ___

~NN./
_
~
<
~
’

C

For M Ta
l
~
/6 Ta 1”4 the drift dire L ’ ion switches so tha t very strong fields

(M 2 ~~~~~~~~ (wi th essentially no dissi pation ) are associated with westward

drift. From numerical results the ve l ocity is found to be
1.

L~ 13,33 . ..
~~~
. j o  .4,. vs~/~~~~

-I

L ~~~~

—-•- -

-



~ iT=~~- 
- 
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which with M2/Ta ~~~ 16 for the earth is comparable to the observed westward

drift. (This is the phase ve l ocity, the group ve l ocity is always westward even

for small B. Also these results are for ~7— ~~2C —.~~ V).

For a dynamo one would like to find a simp le problem which contains the

essential physics withou t having to consider a sphere . Soward exp lored the weak

field li m i t  of a Benard dynamo , and found a local reg ime of stable dynamo opera-

tion . His results cou p led with those of Etayeb & Roberts and Eltayeb & Kuma r sug-

gest the following sketch for genera l rotating bodies with convective d ynamos .

Stron g f~
_. subcritical bifurcation

mag

Weak p— 
supercrit ical bif urcation

y~ a,3

Ra L

A B~n~ rd dynamo in the strong field reg ime ~s rendered extraord i naril y compli-

cated by these aspects of mag~etoconvectior.. Thus one mi ght consider , rather

than the full spherica l modei , either a planar limi t or , -as Busse h~~ done , an

annular mod~~ with top and bc-tt~ ni sLrfaces in clined at a small ang le t~ ~l lo w

Rossby-’ l ike wavcs.

M,.,l ktj~.: #~Iso one mic ht examine a cy lind e r ~-.~ th spherica i caps .

~“riy mcdei of an ~~~ :~yr~ mo i~; subject to thc crit ic is n th ir ~;r~e wouid expPct
an o~.W dynamo due to large scale motion in the strong field reg ime since con-

vection wi l l  distort the ini tial radial symmetry of the temperature field lead-

ing to a “therma l wind” to provide large scale aximu tha l motion . In any case

either approx i mate models or approx i mate anal ysis throug h a truncated modal ex-

pansion seems crucial to obtaining a tractable problem. In the next lecture

we shall examine the case of a weak field p lana r Benard dynamo , where some of

these ideas can be examined in wha t is probably their simpl est setting .

Notes submitted by
Glenn R. lerley

and Hisashi Haukuda
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Lecture 4~8 IHE BENARD DYNAMO

In this lecture we consider a successful hyd rod ynamica l d ynamo , studied

by Soward (1974) in the weak field reg ime . Ph ysically we have in mind a rota-

ting B~nard dynamo in the ~~~~~~~~~~~~ 
. -‘

~~ limit. This imp lies , as we have seen , a

small scale convective motion (from linear stability considerations). We wi l l

put in a small field and see if it is amplif ied. As the structure has local

helicity we antici pate it w i l l  exc i te magnetic fields. Fina ll y we use a mod i-

fied finite amp litude theory which i ncorporates first order magnetoconvective

back reaction on the ve l oc i ty field , and enables us to investi gate d ynamical

equi l ibration . By weak field we mean I’~ ~~
-
~
-
~z-

Ma l kus: How is it that equ i partition doesn ’ t enter into the problem?

Chi ldress: This requ i res N’— O(Ta 1”6) in which range there may be more
than one stable state.

Pedlosk y: M .—O (i ) means all the terms in the dynamic equation are com-
parable and in particular the buoyancy roug hly balances the
magnetic energy.

We fix ~, —-c O(1~ ) in which case the convection process rap idl y achieves

an equilibrium convective heat flux (essentially total kinetic energy) equal to

that realized withou t a field , while the dynamo process changes on a very much

longer time scale. Effective l y this decouples the energy of the convective flow

f rom the m agnetic energy (cf. discussion on this point re: validity of first

}
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order smoothing). The magnetic field in the weak field l i m i t  merel y redistrib-

utes the energy among the available modes; thus the question of mode degeneracy

is i mportant. In the B~nard problem all rolls of fixes ~ are equ i valent and

direction is then a continuous parameter at our disposal.

Ma l kus: These are assertions not duductions , one wishes to establish that
this is wha t emerges.

For our choice of Ra there is a band of allowed ~ 
of width ~~~Ta~~

”12 but for

convenience we shall restrict ourselves to a band of O(Ta~
’1”6 ) abou t k~ , to

avoid ni ultip le scale anal ysis in the horizontal.

Ma l kus: Is this essential? Wh y are you being so restrictive considering
supercr itical equilibration when in fact a subcritical distur-
bance may be i mportant? It seems a kinematic approach , essen-
tiall y you are say ing a square lattice of rolls works .

Chi ldress: No , you do not know tha t one mode isn ’ t selected dynamicall y.

Ma l kus: There is even a convection experiment with triangles ! With an
appropriate bottom surface you could probabl y even get a convec-
tion pattern in the form of the GFD dragon !

Pedlosk y: You impose no planform restrictions other than no variation on
small scales.

Sp iegel: You can always put walls in the problem and select a single k.

Scales: i~ — ‘ 0(1) , ~ o(i~~) R~
Let u0 = veloc i ty scale ,

— IC.
expansion parameter = £ Tb

Recall , ~ = “i i’ = 
~ 

( ~~~~~ )~ 
so then , balanc ing large scale diffusion

against the \7X (o 6)term in the mean field equation , we have

_ _ _  
~~~~~~~~~ => ~~~ 

._i. ~~~~~O(T %~~”~)
L~ 

L L
1 1.7’

For the unit of time we choose the magnetic diffusion time :

Finally write the temperature as

T T0 + ~i- ~/L)~~ 
-1
~ £ A V~~

Keller: It is interesting that u0 is determined independentl y of the mag-
netic field even thoug h it is the back reaction of the field that
should lim i t  the ve l ocity.

Chi ldress: That ’ s basicall y due to the linearity of the kinematic dynamo
prob l em .

~1

— - - -- - ---- • - - - -~~~~~~-- -~~~~~-- -—~~~~--— -- ~~- • •-- “--- -~~~~~ — - -~~~~~ - - —  
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imposes a develop-Pedlosk y: It seems that your choice of

ment time for an unstable mode. A dissipative time for scales

of Ta
1”6 leads to a Landau-type evolution equation . The other

time unit , L2/1, , is much longer so that there is a rap id hydro-
dynamic equilibration which fixes in quasi-static equilibration
and then one can imag ine turning down the magnetic diffusivity
to produce a slow drift.

Stern: This approach presumes that one can solve the stabili ty problem
for a finite amplitude ve l ocity field without a magnetic field.

Ma l kus: We have for example Busse ’ s O~E~ )expansion a round the band or
Pedlosk y ’s techni que.

We set Ra~ £ 1~ so that ~~~~ 0 (~i) (since ~~~~ 
) and we pre-

sume all diffusivities are about equal i.e. ~~)~~
.-

~~~~~~-
--— Y~ (althoug h for the Earth

—
~~~

--- -
~‘---1O

’
~ for which singular perturbation there is a “sharp ” temperature field

1.2

which does not diffuse while momentum and magnetic fields do) .

Pedlosk y: Strong differences in diffusivity hence a lag between fields in-
troduces fluctuations in finite amplitude states which are other-
wise stable.

Introduce horizontal scaling : -~~~
—

E 
x -

~~
- )“ (and by extension Vi., ) and

we have
1~r7 -

~~~ —~~~~ 0Continuity : Vh ’ i-’-. t ~

Temperature :~ ~~ - ÷ . ~~~) 94- 6i~i -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

~ 4•~~~~~~ ~~~~ ~ ~ ~~~~~ ~ 
_

Magnetic Field: ~~~~~ 8-~~~—-~~~ ~~~~~~~~ ~ (~~x(u~ ~~
‘
~ 1”~ M “~f-~ 

‘
~
‘ -~ ¾ A _• Momentum: —~. — # E  7h )

~
L-÷

~~ 
w -  ~~~~~~~~~~~~~~~ ~ u.

\ •, ~ .~ ,~ 213 ~ 
-~ a. .A -

~~i O t A  K

~~~~~~~~~~~~~~~~~~~ 
))-E~”~c~- ,~ -~~-~~~~ -

~~~

where in the last equation we further define ~~~~~~~~~~~~~~~~ ~)Lmean temperature

r~~ /a~~9}j~~~~Ii~~
l 

~~‘h~~ ra’~ ~~ ‘e’1
- 

~~~~~~ 
y~~ j .’w Oat

Notice in the momentum equation tha t the Corio l is force is a dom i nant term.

Finally we introduce expansions in the other fields:

where
a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  



. •.- - —— -- -----.-••- -- ---.---•—--- ---.‘•----- - - - -—~~~~ -, ~~~ —~~
- __

~~~~~~~~~ _ _ _ _ - — -—,
~~~

—
~~~~~~~-.•——-~~~~~~~~~~~~ -———• —~~ —-• - — 

- 61 -

— .—~~(o) ~~~~~~~~
~~~~~ ~~~~~~~ 

LA~~~ 
+ . . ~~~

w = WCO)+ ~~~~~~~~~~ + .

and = ~3’°1(~ t)+ ~~~~~~~ ~~ 
g1~. t ) +

P - . -

9~
,,. 9’

~
°’+ ...

where fluctuations first enter at order C 1”
~ (eventuall y but p roduce other ef-

fects , e.g. a mean flow in the veloc i ty field , throug h nonlinear cou p ling).

Pedlosky : What abou t a boundary layer on the horizontal surface?

Ch ildress: The boundary conditions are stress free , isotherma l , so there
is no boundary layer. But even if you inserted one with no
sli p conditions it doesn ’ t affec t results , to the order we
shall work , in the high Ta limi t .

A ._a . ( )

Zeroth order 0 Continu i ty

~~ (o) At~p~ ~~ .$
~ ~ X t) .~ =- 0 Momentum

which is readil y solved with LL~c
t
,~~ ~~~~~ p

(~~~ — v x ( ~ p t”) (div(curl) = 0 in
continuity equation)

a
Note that 0(l) so the ve l ocity field is a ba roc linic geostrop hic ba l-

ance of pressure field and Corio l is forces.

In ~ (e. ”~) we find the same set of equations for ~~~~~~~~ and pC~
) 
so that

a suitable choice of normalization allows us to set L4.h = 0

(t) A ~~~~~~~ ~~~~.,. Cc)0(E): ~~~ + ~~~~~~~ 9 Li.1,
a w’

Oliver; Where is the fluc tuating temperature field?

Chiidress : That enters onl y in the vertica l component of the equations.

The first equation is solved by ~~ 
~~~~ 

p
~~C ) + x 

~~ 
p ~ ~~‘ then the

second equation y ields ~~~~ 
~ — — j~~~. The ~ component at order E.. y ields

(~
)

~~~~~~~~ 
-f- ~~~

(€)) 
~~~~~ 

~~ ~/~~where R~, R~~+ E ~~~~ . -
Pedlosky : Taking the curl of the ~~~~~~~~~ equation we see that the diffusion

of the vertica l component of vorticity is balanced by fortex
tube stretching, the pressure gradient is in geostrop hic equili-
brium , it is not just hydrostatic; as in Stewartson ’s work,
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i nvolving an £~“ expansion with buoyancy , internal stretching is much greater

than Ekman boundary layer stretching.

The 0(€.~) temperature equation is -
~~~~ ~~ e~ -w ’°

~ 0. 
App l y ing c t o

this , to the oC~)~ component of the momentum equation , and eliminating
~~~~~~~~~~~ F—

~~~ ~o ) ’~~~. c9~ (i’)
( v- ~~ c~÷ ~~~j w  = 0

(o) A ~M 
~~~~~ 

.— (o) ~

Let vV ~ w (e �lr)(7?~~) then which recovers
I~c I ~~k~

the asymptotic result from the last lecture. Closure at any order , fl , requires

the ‘~1+~ order equation . j
Also the heat flux is known from ZIW) by the adjointness (or solub i lity)

condition app lied to R
’
~~
’
. In this weak field model (Al ~

- 0(l)) the B field en-

ters onl y in the momentum equations and thus does not affect the heat flux.

A different scaling appropriate to the intermediate field reg ime would bring in

B at second order (albeit for this model it seems to be no stable solutions in

such a range) while in the strong field reg ime magnetoconvection would greatl y

mod i fy the heat flux and B would be present in l owest order and it would be in- —

appropriate to expand about the zero field B~nard problem .

Stern : When does the linear stability problem forl enter?

Chi ldres s : The equations give the moda l amp litudes.

Pedlosky: Note the field corrections are of order (amp litude) 2.

If we consider terms of ~ (E. ) in the temperature equation and average over

the horizontal we obtain
a / ‘Al 9’ -s-. 

~~
—

~~~~~
- o

~ a~~
where the second term represents the convective heat flux , that is , there is a

balance of kinetic energy and the mean field. This is how via the °~ -effect

large scale motions are driven in a sphere . Convective motion leads to a new

temperature profile which stabilizes quickly.

_ _ _ _ _  

convective heat flux
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We wi l l  write the mean field equation with this convective mode for small scale

motion in the horizontal (compared with a length scale of 0(i) in the vertical).

Smoothing is done by horizontal averag ing in both the mean field and induc tion

equations. Recall our expansion for the magnetic field
.-~ ~~~ ((.) .A

0 1 3  ~~~~f3 (
÷~~~~•

where we wr i te the mean field ~~~~~~ as <~~> (~3,(~,t))E~,.(?,t), c i.e. no horizon-

tal mean on the fluctuating part of the field. From ~~(E~”~-) terms in the mag-

netic field equation we have .a. ..a.

~~~~~~~~~~~~~~~~~~ 
~~~~(o~• ç 7~~~~~(

which expresses the interaction of the small scale velocity field with the mean

magnetic field. Then , taking terms of 0(E.’)one obtains
~~~~~~

(O) f3
(
~l 

~ ~ 
~ o

,?t ~~~~~~ -

which becomes ~~
~~~~~~~~~~~~~~ 

.
~~

-
~~~~

o)

+ 
~~~~~~~ 

[
~ (

~A (C) [
~i~ (

~~~
(0

)~~~~ C~~
)]

Averaging in the horizontal (indicated above by brackets) y ields , ultimatel y,

~~f3~ 
- ;~ -~~~-(s n (z~ i r~ j I3)~’) =  0

where /
/~~~~~~~~j ~~~~~~I )~ o~:j �, —i~

:-
~
- e ( ~~~

-J 
~‘-~~1

and e is essentiall y the energy in the mod.e 1~ . We can normalize by re-

quiring 
~~~~ 

+ o(.~ 2. (For the isotrop ic case ~~~~ ~~~~~~~~~~~~ 
I . ) Note the factor

of SM1 (l?T~)which corresponds to the polarization of helicity by rotation .

Specif ying some initial distribution of amp litudes one finds there is a certain

minimum value of 7~. requ i red for a solution , which corresponds to a critical

kinematic energy for the convective field.

The self-consistency for the prob l em enters in third order by an evolution

equation for the amp litudes , g iven the magnetic field. Thus one can imag ine iter-

at ing the problem numerically be giving e(k,c) , finding 6~~(?)~ t) which de-
termines e (K , A t). . The evolution equation is of the form

with the requ i rement tha t since the kinetic energy (heat flux) is fixed , ( ) on

both sides is identically zero. To simp lif y the problem one can imag i ne a system

with discrete wave vectors and certain selection rules.

Knl ler: If the initial value (amp litude) of a mode is zero , it stays zero .

-~1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Stern: But onl y at first order , there are certainl y mode-mode inter-
actions in hi gher order.

Pedlosky : The total energy is determined hydrodynamica lly, so the rolls
could arrange themselves to make B = 0 couldn ’ t they?

Chi ldress: It doesn ’ t happen , appa rentl y, if two or more rolls are
excited . U

Ped l osk y: Shouldn ’ t the system try to break constraints?

Childress: Yes , but it never qu i te makes it.

Keller: It ’s like the oscillatory case with no dissi pation .

Motivated by the sp irit of the kinematic problem we wil l  set

I
/ o - ’

1,  v7i~~~ (
\ 0 I /  \l 0~~

Pedlosk y: In considering all rolls with all possible distributions , how
do you choose °‘ ?

~~~JJ
Childress: There is only one scalar , ~~ to within a rotation of coord i-

nates. We now l ook for stead y solutions.

The field equations are

0

with boundary conditions ~~~~~ =0 ~~ o , 1, i.e. perfectly conducting walls ,

carrying no tangential current. To eliminate uniform fields we require

JB ~
= 0

If we define the equations become

27H~L (~ ~~~ (2- ii~~))’- ç~ 
0

integrating once ~~(2fl?tLslr LZ77~)- =0 th us

çf~ e
_J )

~
CêS (~~

;)

an 

~~~~~~~ 

cos
~~~~~~d~~ = 0 is the associated ei genva lue problem

with a minimum of

2.404. .1
Soward considered nonstationar y fields and found a smaller A~. .

ii

L
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For a more general mode distribution the stead y r esult is
1. 1/

2 .90L1 1.ihere ~c
• 

(deh~) 2.

Proctor: Don ’ t bound i ng techn i ques for the unstead y case give a (an

absolute l ower limit) value of ‘Ti~/2 ~

Chi ldress: The smallest exhibited is I ~
Keller: It doesn ’ t seem you should beat the stead y result with bounding

techniques which are insensitive to unstead y ~~~~
.

If one considers a wave-like field of the form

8~= ~

with o< imposed the result is 2t
~
cS ~~

. 1.597 and = -1.394 .

Alternative l y we can compute the ø . matrix for a single , slowl y rota-

ting , roll (rotationa l frequency C.~ ) with the result that 2..
~~
cI= 1.08 and

Sp iegel: A rotating roll is not an exact solution of the convection
problem.

Pedlosk y: But the rotationa l rate is on a very long time scale (com-
pared to hydrodynamic equilibration time) .

Keller: This approach g ives rise to an ord i nary differential equation
with periodic coefficients soluble with Floquet theory.

Now we turn on feedback and look at the results of some numerica l experiments.

1) For two orthogona l modes there is a lim i t  cycle behavior for energy distri-

• bution in the field and rolls

kinetic energy kinetic energy
all in roll #2 all in ro ll #1

2) With three rol ls oriented at 1200 intervals the distribution of kinetic

energy in the modes is something li ke the follow ing

• - - -- . . - _- -—
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which can be thoug ht of as the system mimicking one roll rotating .

3) Follow i ng Soward one considers a continuou s angular distribution of energy.

< 2 T ~ (correspond i ng toN~~p0) for a class of motion with e (9)cor-

responding to a fixed structure ri g idl y rotating at fixed angular ve l ocity, i.e.

the distribution has the form e(e-wt). The following results are obtained :

continuous branch of
rotating solutions

\
Emag 

\
-~ energy concentrating in one roll i.e.

results from 2 and 3 roll calculations above

subcritica l
disturbance l

The dynamical p icture for the weak field limit is as sketched be l ow :
-a.

Side view T~ L ______uniform
—

~~ ~~~~ 

-

~~~

-

~~~~~~ 11
Top view 

_ _ _ _ _ _ _

-~

( I
rol l axes

Ma l kus: This orientation of roll axes is the same as in the case of a
weak shear fie ld , for a strong field the rol l axes line up with
the field.

This suggests a physica l mechanism to explain the rotating solutions.

Roughly, roll axes stay orthogona l to some representative vertica l average of

the magnetic field. By the o.c.-effect , mean current is generated perpendicular

to roll axes , which acts to feed the orthogona l component of the field. This

changes the actually direction of the field , and so rotation occurs. When one

considers the polarization of he li city, the boundary conditions on the field , and

the si gns of the o~ -effec t , one gets the following sketch ( 13, is taken a pro-

port ion~ I to cbs ã~):
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— > rotation of rolls

3D >0 ~~~~~~~~~~~~~~~ mean current

- westwa rd rotation induced

‘ induced field

The rotation of rolls to the “west ” is observed in the numerical solutions.

Keller: How abou t a different means for limiting B besides back
reaction? It seems 0 has to be too large to lim i t  the
motion .

Proctor: No , it is otherwise a kinematical problem .

Ma l kus: Yes , there are certainl y other mechanisms thoug h.

Sp iegel: Yes , saturation for example where i~

Notes submitted by
Glenn R. lerley

and Hisashi Hukauda
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Lecture #9 COMMENTS ON THE SMOOTHING METHOD

Yesterday afternoon Joe Keller presented a genera l method of app l y ing

smoothing method s to “rough” problems . It mi ght be useful to consider what

the smoothing method app lied to the dynamo problem is g iving in its entirety.

In Keller ’s formalism the operator wh ich g ives the total field from the

mean field is L’~ 
(f1.1~~(i~ p) \./)] I

, and in Lecture #3 we called it{I-$]
1

Each operator is a differential operator. If we i nvert and substitute into

the Mean Field Equation the result is

~7)([5
2 

~~ ~~~ ~

.

where is the smoothed field. The magnitude of the S term is
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— 
u~~ — . . . ] where the first term represents the ~~ -effect(LtL,-Pq)L L C

and the second term is /3 . If we assume tha t ~~~~~~~~~ is smaller than or comparable

to and balance the diffusion with the o~ -effec t we find tha t 1

or , i F R -
~4~ 

then , —

,
~~~- 1~ ~ 

.—
~~ 1 R - iT.

The ,~?-effec t is then always smaller than the o~.-effect by a factor of

(This need not be true if w is ordered differently, however), even if

the o< term were vanishingly small and we attempted to balance diffusion with

the /5’ term we discover that the ratio of the two terms is

~~ ~~~~~ 
it~L ~jL 

/L

so the ,3 -effect is 0(R) compared to diffusion .

If we suppose that the second order statistics disappear (or at least that

the °~ -effect vanishes), then the diffusion term must balance with the S 3 term.

The ratio of the largest terms is R31
~
.
~
1 so R e “i and in genera l , if ~ 

- I)
order statistics vanish then R~~ ~~
The B~na rd Dynamo

In lec ture #8 we learned that the kinetic energy of the flow in the rota-

ting B~nard Dynamo tends to concentrate in a very narrow spectrum in wave number

space and that the roll axes that are most easil y exc i ted tend to be aligned per-

pendicularly to the main field. In order to maintain this ali gnment the rolls ro-

tate slow l y with the main field. Compared to the spherical dynamo this model is

cry easy to anal yze but we should also consider the possible defects of the ro-

tating B~
’nard dynamo .

One problem may arise from the degeneracy which allows multi ple-roll solu-

tions. If walls could be i mposed which would not allow rotation of the rolls while

still allowing the existance of severa l nearb y wave numbers then an o~ -effect

would sti l l  be present. In this case however the o( matrix would be very aniso-

t ropic and as a result the components of the magnetic field wil l  be of very dif-

ferent magnitudes.

It is also very like l y tha t the B~~ard Dynamo is unstable for larger fields

than we considered . In the weak field ana l ysis the total heat flux was fixed .

Ph ysically we would imag ine that the addition of B field would further decrease

the eiqenva lues and the dynamo would take off.

- ---~-—-• — • •
~~~~

--—
~~~~---~~ -~~~~~~~~~ —------ ~~———- — ~

-—— -- - - - -
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If the Hartmann numbe r is in the intermediate field range , i~1~_ 4 ~
then the magnetic field terms enter into the perturbation equations at the same

level that the heat flux is determined . The stead y state solution with two

orthogonal rolls was found to be unstable to the intermediate field , and numer-

ical calculations by Yves Fautre ll indicate tha t for certain conditions , B~nard

dynamos in the strong field reg ime are also unstable.

Convective Dynamo Action in a Sphere

This top ic w i l l  be difficult to study directl y since no working models of

a spherical convective dynamo have been fully exp lores . We will  therefore limit

ourselves to a few general properties imposed by the sphericity.

We start with the simp lest system and work up in comp lexity by incorpo-

rating more of the physics. The simplest model is simp l y geostrophic mot i on .

Geostrop hic Motion: Here we have only the balance of the pressure gra-

dient with the Corio lis acceleration .

t7.L1~~~0

and we require the norma l component of the veloc i ty to vanish on the sphere , S.

Taking the curl we have -
~

= 0

The onl y constant vector which can be tangent to both intercepts of S

with a vertical line is parallel to I ,~, . Hence , by incompressibility, the

ve l ocity is only a function of p and we write it as

~ ~fw ~~~~ (x ~~+ 
~~~~~~

Geostrop hic balance alone is not enoug h since it neg lects convection and

the coupling of the flow to the magnetic field , but we are interested in how mo-

tion similar to this might be set up by nonlinea r p rocesses in a convective sys-

tem. Note that no geostrophic motion is possible if ~ = 0 on S.

taylor ’ s Const raint: We expect the magnetic field to p lay some role in

the dynamic balance in the core. Therefore we add a magnetic field and “every-

thing else ’’ .

~~~~~~~~~~~~~~~~~ ~~x ( ~~x~~ )=3 ~~~

In cy lindrical component form this can be written

3.;

~ 

aP i { ( ~~13 
- 

~~~~~~~ 
~~ ~ 13~)]

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -—~~~ _ ~~~~-~~-
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Consider the 4’ -component. If we integra te this equation over the

cy lindrica l surface inbedded in the sphere , the result w i l l  be the torque on

the cy linder. We are assumin g tha t all of the physics is included so we may

set = 0 on 5, and so there is no flux through the sp herica l caps . Onl y two

of the terms contribute to the integral of the ~ =equation .

I C )  ~~~~ee~~~~~~~~~~~t 
~ -~~~!L ~~~~
Ci,,

This is Taylor ’s Constraint. This condition must be satisfi ed by B at

every instant. We can wri te Tay lor ’s Constraint in a slightl y different form

i f  B is axisymmetric and

~~~~~- 
~~~~~~~~~~~~~~~~~~ ~1 

~~~~~~~~~~~ ~~~~~ 
5.

We substitute the axisymmetric form for B into the equation

I ~
p) = 

ç ~~~~~~~~~~~~ ~~~~~~~ 

- 

~~~~~

- 4~
) d

,rj~~ pi.

Thus , i f  the p-component of force is neg)i gth)e, the inte gral mus t van sh
]earl y ~‘~~“( 

~~~~~~ ~~~~~~
-) ~~~~~ ~~~~~1.Q 1.

S

J 

-—-- ~~ -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - ~~~~—-- • -~~~~~-~~~~~~~~ -- ~~~~~~~~~~~~~
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Not&~ tha t the oarity of A and B for di pole symmetry (i .e. A even , B odd)

should make this a non-trivial constra int. What are the imp lications on the

dynamo prob l em?

A Non-existance Theorem. Consider a dynamo with the following four properties:

(i) the dynamo is essentia ll y axisyrnrn etric ,
—

~~
(ii ) 3 0 or at least neg li g ible ,

( i i i )  B >> A (e.g. Brag inski i’ s Dynamo where 0 (
~~ 

B)

(iv) there is no c’(-effec t in the mean field equation for B.

Then the dynamo runs down in tha t B decays to 0.

Proof: Integrate the ~ -component equation for B , keeping onl y the dominant

terms . _____— — B~i- 1r (p~t )
~
,L4J?

~ ~
in i i l ar l y, from the ~0 -component equation we get

,., 
____

~~~~~~~~ ~~ 
- 0

Comb i ne these two equations

—

If we define ~~ Q~ .a.’ then c~~ 
~~~~~~~ 

(~~(p) +

Now j3 satisfies Brag inskii ’ s Equation based on smoothing,

~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~

Substitute for w from the above expression , multi p ly by and inte—

grate over the spherical core

~j I 1 3
~~~~~~~~~~ .~~av~~~~~ .v (p -’s) cLv:~ 

t_ -
~~~~~~ dv÷J .!~- [ VpA]~,

dVpf~ p~
)

V V
V

The second term vanishes because V is divergence free and 13 vanishes

on S. The third term can be rewritten as

P ap 21 ~

The last term can be separated into two parts.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t ~.

Butf,~~(c’~~)C 9pA)d~~~O by Tay lors constraint and the final term can be
4

__________ —~~-~•-- ~~~~~a.A. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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further expanded.

r ~ ‘s’/ ~ - -~~-- I’33”i’) ~~~~~ otp d) )T L~i~ /?/ ~, ~~~~ ~ 51 9~~ -‘
- 

((
~ rL (~~ ~~-~~~~)- ~~~~~~ ~&~)] ~~~~~~~~~~~~- 

)) 3 L~~ ‘~P ~~-‘° / ~~-~° ‘p . 
‘~~~~~

= 0

since (3 ~ on S.

Thus , the energy equation for ~3 reduces to

S must decay exponentially, if the fou r assumptions we made in i t i a l l y  are to

hold . It is of interest to note that the addition of Tay lor ’ s Constraint was —

sufficient to destroy the ~~<. -effect in Brag inski i ’ s kinematic model.

Breaking the theorem. In order to have dynamo action in a sphere one or more of
Ce

the conditions must be relaxed . Brag inski i (1975) hypothesized tha t ~
thoug h small , is not neg li g ible. He proposes that A~ <<A,s0 that the poloidal

field is almost vertical. The core-mantle coupling is important due to edd y

currents induced in the mantle. ~~ is prescribed and there is buoyancy in the

Braginskii model. The object is to discover the function C (p,t~) g
iven all of

the assumptions.

Another possible way to break the theorem is to include two o( -effects

or put in a radial dependence of ~3~4 Ma l kus and Proctor proposed a model where

the ~~ -effect is important. If we take a p lausible o. (one tha t is odd in ~ 
) ,

the 5 field can be prevented from dying a~ay. If we write the force equation as

GI Ll.
~~

~ie can rega rd this as a predictive equation . By evolving the fields numericall y,

the role Taylor condition can be investi gated . The result seems to be numerical

‘-~i ,j il ibrat i o n to the Tay lor condition .

‘h,’ Convective Dynamo. Nond i mensionalizing the equation s whould give a good m di-

~~~~ 
) f the proble m s we face in attempting to solve the problem of a complete

- ie ~yr~ Irio .

~~ -,.~r~~hles in the problem can be scaled as follows :

ii
-~1
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Temp — 
~~~

—
~~
_- Magnet i c Field p—’ (2 fl.,,LA1 fl~

Unit of speed ~~~
-‘

The resulting nond i mensiona l equations are

5-4~ ÷1~~
x ~t+~7P+ B x 9 ~ 3~

~~~~~ .‘~r — 1 (uniform heating)

.~~~
_
~~~~~~7x L L X ~~~3

The values of the coefficients for the earth core can be estimated as ,

q 
_ _ _ _ _S =

~~~ L~ 
io /00

E — ~~~~~~ N0. —. j o~~~

’

~~ -f - --... 10~~’
Calculations by Proctor ind i cate that we can probabl y neg lect terms mu l-

ti p li ed by S and E. The effect of large 1~ still remains to be solved . If

there were some reg ion in a sphere where convection were allowed to occur , it

mig ht be possible to make the convective system thin while increasin g the R~
This would force the existance of one small length scale to be importan t in the

problem so a smoothing method could be used . Then , in a thin geometry we could

see if we recovered results obta i ned previousl y.

Notes submitted by
Dean S. Oliver

and Shigeki Mitsumoto
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Lecture #10 APPROX I MATE DESCRIPTIONS: MODAL , DISC , CONCEPTUAL

In order to approx i matel y stud y the convective dynamo there are severa l

usefu l approaches qu i te different from forma l asymptotics but s t i l l  very useful

for understanding the dynamics of the system at an 0lmost structural level.

There are many examples of simp le models that exhibit behavior very similar to

the record of magnetic reversals of the earth’ s field. We wi l l  examine severa l

of these models.

The simple disc dynamo consists of a disc

driven by a constant torque and sp inning in a mag-

netic fie ld. This model has the equivalent of an 
“

~~~~

-•

~~~~

t .~ -effec t withou t an ~~c -effect (although at this

level we cannot attach much of a distinction be-

tween them) . If the rotation rate is large enoug h

the field will increase. T

The idea in looking at this simple labo ra tory model of a dynamo is to

formulate ordinary differential equations which capture the essential elements

of the system . The two equations describing the currents and the torque are

LI * f~I M ~u L

and C w~~~r— AAf

where C is the inertia and M is the mutual inductance of the disc. If these

are then nond i mensionalized the result is

~~~~~~ ~ x y 
—

These can be solved in the form

If we look then at the phase p lane we see that osci l litory solutions ex-

ist but the dynamo cannot reverse.

The coupled-disc d ynamo of Rikitake is slightl y more comp lex than the

simple disc model.
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We can think of the current through one loop as representing the poloida l

field while the other represents the toroidal field. Insofar as the kinematic

dynamo is concerned we would call this a model of an o(tdynamo (or cd -d ynamo ).

Unlike simple disc , this coup led system exhibits aperiodic reversals (see e.g.

Cook and Roberts , 1970).

Approx i mate models can be considered from severa l points of view. The

simp le disc dynamo is an example of an analog for dynamo . They are similar in

some aspects of their behavior but that is a l l . The coupled discs dynamo is an

example of a heuristic model. An attempt has been made to put some physics into

the model: in this case the coupling of the po loidal and toroidal fields.

The simple disc with a shunt carried the heuristic process one step fur-

ther. Ma l kus and Howa rd proposed that we should reason not onl y from how the

laboratory dynamo works but also on the basis of how the theoretical models we

have been looking at would work. Consider a mode l with a po loida l field , A ,

and a toroida l field , B. In an o (w-kinematic dynamo we could write the follow-

ing equations to describe the time dependence of A and B.

o~~3

B k Y ~~B cuA

are the effective diffusivities for the two fields. If we set ~
and tai z W~ , we would be back to the two-disc dynamo model. Instead of this , we

take o~. to be a constant as before , but allow w to vary according to the equa-

- -  
tion , Cl.Z~ 

- —l )c-A.’— A13

T is the externa l torque on the system ,vl.~ describes the viscou s torque and AB is

the reaction of the field back on the system. It is reminiscent of the —com-

ponent of the momentum equation in cylindrica l coordinate s .

In order to realize this system mechanicall y, it is only necessary to add a

shunt to the simple disc dynamo .

The equations for this dynamo model are:

M~~I, : Ld I1.+ 1~~1,~* R~~(t L II
’
~

L~ I1 + I, 7~~
C~~ ~T- M1, 1.2 — 

--. - ----= _ - ~~~~~ - ~~~~~~~~~~~~ -- -- - _ - - - • -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--
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Circuit Diagram

The Shunted Dynamo

Kay Robbins transformed the variables in the following manner:

r~~w,I,~Ij

where ____  
. ~~~~ (R,,~

+Rs)~Rd*/~~)
F
~S
M

2. R~o
/1 R~VJ ~ ~ R 

~
Then the equations become

dx -
~~~~~~~~~~~

x q -
dt

~~ 
z o (X -y )

where
Lw

s

Three steady-state solutions to these equations exist. The easiest to con-

sider is the case of convection withou t fields so that y 0 and x R/~
To examine the stability of this case we linearize the equations around the point
( R/~, , o , o) by putting ~ ; y~ ~ 

The equations reduce to

A + o  -~~- 1

X~~I I
So ~ ~~(~~+i)4.4 I T) 1a(R/11)) for the unstable root. If all

solutions approach the zero field solu tion . If > the ei genva lue is positive

and the ~ield is unstable to the addition of magnetic field in the weak limi t. The
4 

~~- --~~~~~~--_ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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other critica l points have nonzero mag netic field. If we repeat the above pro-

cedure and linearize around the points (!)±J~~ V ,± ,/i~Ti~)the ei genvalue problem

reduces to a solution of the equation

As the constan t term , 2cr (R—l4is positive , the necessary and sufficient

condition for .7t. to have a positive real part is tha t the cubic equation can be

written in the following form:

r~~~~~~
) j (A r~~~~)) (~~~A

’
r )= 0 A~~> 0

For the critical point ?t~.p~~ 0 then
+ X’

~ ~~r = 0
If we compa re terms with the ei genva lue equation we find that at the critica l

point ~~rUS v) (cr 1. ~1 + I) (crVt 1~.) -
3)

Therefore

As f~ increases , the first positive rea l value of R occurs for comp lex

The dynamo is unstable to growing oscillations for t~ > R~~.

l)+I

The question of behavi or be l ow R~~is not answered by the linear theory ,
but solutions of the dynamo equations can be unstable well be l ow the point of
linear stability. It turns out tha t there is a critica l value of R such tha t
the fields cha racterized by R< are completel y stable. ~~ has been deter-
mined numericall y for the system of equations we have considered but it has not
proved possible to calcula te R5~ ana l ytically.

Convect ive models

We keep the same two basic equations for the poloida l and toroidal fi elds ,
A + ,uA~~o.B
B + i L~~~~

Z CA)A

but now we attach a sli ghtly differ ent meaning to the forcing equation . In a con-
vective model .a. should represent the response to therma l d riving in the presence
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of a magnetic field , i.e. a modified therma l wind . If we let G~ denote the

mean temperature perturbation then for W we write (neg lecting “inertia ”)
~c I ~~~~~~~~~~~~~

In other words , the distortion of the mean temperature field g ives rise instan-

taneously to C.~—)

We sti l l  need equations for oG and ~~ so we should consider the effects

of small scale quantities. Let e be the small scale temperature and let u.

be the small scale velocity. Ideall y S should be correlated to 1-’- by an equa-

tion of the form: .

~~ x ~ 
I< L-A i : - k  

~~).

The term on the ri ght represents the effec t of the advection on the sm all

scale of the distortion of the mean temperature profil e. We assume , instead ,

that 0 is related by the simpler equation , —

so tha t if <LA g ? is the convective hea t flux then

—

It is the convective heat flux which distorts the mean temperature profile , so - •

~~*~~~~~=k 3 ( ks)- - •

Onl y c,ct remains to be determined . In first-order field models 04 can be

written 
~~~ <c~~>X(A ,I3)

Letting 7~. be a function of A and B allows for effects absent in two scale

smoothing. But take A to be a constant here . We still need an equation for

~~ or . Multi p l y the momentum equation by L~c. and average , then , if

the inertia is small (E~~<1) the equation is

k<~~~> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ R ~&8)~~~J <~~ >
where Q(A ,B) is the back-reaction of the mean field and T~(.A ,13) of the small

scale magnetic field. After rap id equilibration , with R(A 5~ ) taken as 1.

R~ (1 -1~ ~ ) - Q 
~~~~~

The equations are then

A ,A = C 1 ~~(1-4~
®)-Q] B

~~~~~~ ~3[1~g (1_ kG ))~~Q) (i-k® )
; lotice tha t if e~) is identified with the mean temperature perturbation
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and some nonlinear effects are ignored , one recovers the model of Malkus and

Howa rd . Equilibria and stability are hi ghly dependent on the values of the

parameters. In some models AB is put in for Q. We would at least like to know

if Q is positive defini te and perhaps we can get it f rom the Ph ysics.

Kennet ’ s “ABCDE ” Model looks at the full equations but considers onl y certain

modes. It includes both convection and the Lorenz force. The model assumes

only one temperature , ve l ocity and mean temperature perturba tion modes.

U (c -~-~- ~~“~~ CO~ fl~V1J~~, c ~~~~~~~~~~~~~~ t~~11~~) ti.(t)

9 F s,n w~”~~ e(t)

5(~~1 Zfl’~T~ c~ftt
’)

= (d -
~~~~~~ 9 ’ ~i

’
~c~~s n -ij~ , c)-}~- cDs vcrt~ , ~ $l n  y~ir~~) A (L~)

(
~~~~1(Z~~~ ~h o)

Then , if we disrega rd positive constant multip liers the equations have the form:

o _ 9 + L A (i- k~~~~~~
)

A = - A ~~~B
-I3 +~~.A

The equations are very similar to Soward ’ s model. The magnetic field has

two components. The convective system without the magnetic back reaction can be

compared with the shunted disc model.

We end with one possible idea for further research. It may be possible

to apply variational princi p les to obtain dynamos. We would look at the system

which maximizes the growth of magnetic energy g iven a particular state. If we

assume that all the energy flows into the mode which causes the greatest maximum

growth , an o.(-effect would be generated .

Notes submitted by
Shi geki Mitsumoto
and Dean S. Oliver
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SE M I N A R S

and

ABSTRACTS OF SE M I NARS

ON F L U I D  MOT I O N AT THE SURFACE OF THE C ORE
Edward R. Benton

Two different method s of obtaining unique horizontal fluid motions

adjacent to the core-mantle boundary using geomagnetic measurements at earth’ s

sr~rcace are considered . The mantle is taken as a spherical annulus of inner

(outer) radius r = b = 3485 KM , (r = a = 6371.2 KM). The core fluid is assumed

to be sufficientl y hi gh l y conducting that the frozen flux assumption holds to

leading order , and to the same order the mantle is an insulator. However , core

conductivity is not supposed sufficientl y large that a current sheet exists at

r = b and the magnetoh ydrod ynamic boundary layer there is largely ignored (on

the basis tha t , because the core magnetic Prandt l number is small , then so

also should be the jump in ~P x across the layer , at least if it is of Ekma n-

Hartmann type).

For the first method , continuity of I across r = b , together with the

insulating nature of the mantle assures tha t one can find ~
‘at the top of the

core . Backus (1968) considered what velocity information could be obtained

primaril y from the radial frozen flux induction equation . His result , that

null-flux curves (on which B , = 0) move with the fluid , only determines the

core motion orthogona l to those contours , as he emphasized . Here we add fu r-

ther ingredients from other components of ~ B,dt  ~ X (V 
~

- 

~ ). The fol-

lowing results are obtained :

(1) At 18 points on r = b as the field presentl y stands B-~ and B~ simul-

taneousl y vanish and these points are fluid tracers if the angular speed of

westward drift abou t earth’ s axis is locally uniform in latitude , i.e. if

~~~~~~~~~~~~~ 0, where ‘v~~~.~ ’1and e is colatitude. This can subsequentl y

be checked.

(2) At six points on r = b , Br and B9 simu l taneousl y vanish and these

points are fluid tracers if d1 ’
~~-~ ~~~~, where V . This can subsequentl y

be checked .

(3) At 17 points on r = b , B~ and B~ simu l taneousl y vanish and these

points are fluid tracers if the horizontal motion , at the edge of the boundary 

~~~~~~ • -- -- -- _ _ ~~~~~~~ - •-~~~-—~~~~~~~- - -. - - - _~~~~~~~~~~~~~~ - 

j
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layer is , at most , a linear function of depth , i.e. if //r)7~r~~0~ !/r)/~~r ~~~
.

There is no direct way to verif y or refute this assumption .

In the second method , we attempt to construct a systematic perturbation

procedure for the magnetohydrod ynam ics at the core-mantle boundary wh ich can lead

to uni que ve l ocities , not just at isolated points or curves on r b , but rather

nearl y everywhere on r = b Additional physical assumptions are , of course , needed

and what is put forwa rd (still very much in the formative stages) is not what one

v~ u ld claim to be a picture of wha t is actuall y occurring, but rather only that it

is one of many models that could be achieved. Its virtue is its solvabil ity.

Scaled equations of interest are

-
~

~~~~~ ~~~~~~/3t ) (1)

-3 — —

-~ -~ —~ -~

where the scale factors for (B; V; j ;  E; q; and d ) are , respective l y,

.11 ~~~~. lJ~ G~ 1J L3~ L ;cr~,\. here , we think of B0’—’ i~~
3 tesla (10 gauss),~~~~ , ,1u~ ~ L_ ,

U = 4 .lO 4m/sec (westward drift speed), L = 300 KM (a bi t less than the smallest
scales resolved at r = b by spherical harmonic field models truncated at N 12) .
Time is scaled with advection , LU 1 C ~ 214 years wi th the above value s). The two
small dimensionless parameters of the problem are then (in terms of dimensionsal
parameters)

~~~E~~ 0~~~( b ) ~~~L , 
~~~~~~~~~~~~~~~~~~~~~~~~

where ., (b) =~r,, is the conductivity at the base of the mantle , say 200 mho/m
and C~ the uniform core condu ctivity of 3~ lO~ mho/m. For these values ,

~~~~~~~~~~ 0.030 , ‘~2~~ 
0.022..

The idea is to solve the system (1) throug hout the man tle and sown to the
edge of the boundary layer subject to IB 1 0(~~ ) , 1E 0(~r 2) as r —

~ ~~~~~~,

.a. .-
with B known at r = a at two epochs separated by a few decades (or B and B known
at a sing le epoch) and with the following con tinuity conditions across the core-
mantle boundary: II

-~ _, .3 A .3
<8>:()>~ <~~ E):<r .v>z 0, <0> *O , <,~~~

. ~
) ~ 0~ (~~~X~ 40.

The ve l ocity in the mantle is zero and the object is to find the sli p ve l ocity
just inside the core-mantle boundary l ayer.

The quan tities ~~~~~, a~~ assumed to have ex pans ions of the form 
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< ~~m 
( ), ~~ C ~ ~~~. However , (and this is a centra l assumption that

needs verification or refutation) volume charge in the mantle is assumed absent

at zeroth order. The argument is that if T
r. were tru ly zero , no charge from

the core could leak into it and we assume no one put charge in the mantle to be-

g in with; so ~~~~~~ ough t to be proportional to ~~~~ as c~~—* 0 . We now have

~~ 
-: ~ ~~~~~~ 

~~~~~ ~~ 
.

The first three perturbation problems are then :

MANTLE CORE
- --a.
0 - ‘-7 .  -V L-~~s~~ — 1’ —

~ C 
j c o

- V _ ~

V~ ~ x

ç .  3,~~~o
-.3

I: 
. V~ ~~~ 

c~~,

~~~ ~~
c3 i E,~ L V ç X 3 c,~~~~,

) ( L3 e~

\7’Ec2 9 jc2

E~~~ ~~~~~

The zeroth order magnetic problem in the mantle is solved by the usua l

geomagnetic field model in terms of a (truncated) spherical harmonic expansion

for the scalar potential. For the zeroth order electric prob l em in the mantle , 
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note that from the next order problem , since jM = T ~ EM , in order tha t

~~‘ •3,.,., 0 it is necessary that r . EM =O , assuming spherically symmetric man-

tle conductivity. Then , ~~~ is obtained from the magnetic vector potential:

No potential part of E,~ is needed because it would have to be a solution of

Laplace ’ s equation without radial variation . The form of is

~ 
.L(~~)”[~~ ~~~~~~~~~~~~~~~~~~~

and this series converges rap idl y.

With 13M ’  EM known and the continuity bounda -y conditions , we turn to

the zeroth order problem in the core , but evaluated at the core surface where

V.r~ Ofor all ~~ , . Ohm ’ s law g ives (with subscri pts 0 temporaril y sup-

pressed and the on V dropped since the core is the only place where there is

motion): - ~~,

‘~~C r 
W — V

— w I3~ = v

Equation (3) g ives the desired horizonta l fluid motion at r =b in terms of the

horizontal electric field and the vertical magnetic field there ; but these latter

quantities are all continuou s across ~ , so we can use the values at the base

of the mantle. Onl y at null flux curves where Br = 0 is the motion undetermined

(even there , field models should be adjusted or constrained to make null curves

of E e  ,EØ coincide with those of Br ) .

Once V , W have been found , (2) g ives Ec r which measures the surface charge

needed to bring the ground state core radial electric field to the value zero in

the mantle. From EM0, previousl y found , we also i mmediatel y obtain the leading

(horizontal) system of currents in the mantle from the last equation in the mantle

problem at order ‘Y1~~ (provided a model of man tle conductivity is supp lieu).

It is interesting tha t , from (3), the direction of core fluid motion , de-

pending as it does on the ratio of V to W , is independent of the relative l y poorl y

convergent series for Br. Thus , the streamline pattern is obtainable , on this

theory , pu rely from the secular variation of the magnetic vector potential. 

--- ---
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TRANS ITI ON OF DECA Y ING TURBULEN C E TO DEC AYI NG I NTE RNAL G RAVIT Y WAVES
Thomas Dicke -,’

Turbulence properties of neutra l and stratified fluids have been studied

experimentally. Tempora l decay ing turbulence was created by towing a grid throug h

an in i t i a l l y quiescent fluid. Strea k photograp hs of neutrall y buoyant particles

and a photod i g itizing system were used for velocity measurements. Conductivity

measurements were emp l oyed in the stratified experiments in order to ascertain

both stationary and dynamic values of density.

Results of the decaying turbulence experiment (neutral) indicated tha t

the ini t i a l  period decay law , q2 oC’ t~~ , app lies throug h Wgt/M ~~ 800 fcr a

relatively hi gh mesh Reynolds number , 48 ,260. Previous measurements at compar-

ab’e Reynolds numbers have been limited to the range W9t/M ~~~_ 1400. Anistropy

was small , W2 /u2 — 1 .1 , throug hou t the experiment. The dissi pation rate was

found to decay i nversel y with the square of time . The Tay lor microsca le was eval-

uated and the turbulence Reynolds number was found to be Re A + 90.7 for the ex-

periment. Two point turbulence velocity correlation measurements were utilized

in evaluating the macro or integra l length scale. A method of determining dis-

sipation from these correlations was presented .

The effect of stratification upon a turbulent flow created by a verticall y

towed grid was determined for the first time . Conductivity probe measurements

of density variations indicated a turbulence-dom i nated reg ime throug h approx i mate-

l y  Wgt/M 275, after which internal gravity waves were predom i nant. The transi-

• tion period features properties of both internal gravity waves and turbu lence.The

decay rate of turbulence was virtuall y identical to that of the neutral case

throug h Wgt/M - 275. However , after this time the decay rate was much l ower. In-

tegral length scales were computed as before with greater values (by j-’-’ 2O?~) being
determined for the stratified case. A model for this experiment was developed so

that a general set of parameters could be used in pr~dict i ng the initiation tim ~
of the internal grav i ty waves. The results of the decay ing turbulence experiments

are relevant to modeling dissipation in geophys i ca l systems .

_ _ _ _ _  _ _ _  _ _  --
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THE APPL ICATIO N TO THE EARTH OF A NEW METHOD FOR DETERM IN ING THE RADIUS
OF THE ELECTRICALLY-CO NDUCTING FLUID CORE OF A PLANET

FROM EXTERNAL MAG NETIC OB SERVATIONS
Raymond Hide

The proposed new method (Hide , R., 1978 , Nature 271 : 61+0) when applied

to the Earth gives a core radius differing by less than 2°/s from the “se i smo-

log i cal” va l ue . This finding strong l y imp lies that effects due to ohmic decay ,

though crucial in the dynamo process by which the magnetic field is produced ,

can be t reated as small perturbations in theories of the geomagnetic secular

variation . It also sets limits on the electrical conductivity of the l ower man-

tle and the viscos i ty of the core . The new method could be exp loited in the in-

vesti gation of the internal structure of other magnetic p lanets: it w i l l  be par-

ticularly i mportant to use the method to determine the size of the electricall y—

conducting fluid core of Jupiter.

I
NONLINEAR OSCILLATIONS

Louis N. Howard

Three lectures abou t nonlinear oscillations and techni ques for studying

them beg inning with a descri ption of variou s examples such as pendulums and

clocks , electronic oscillators and the van der Pol equation , and models of os-

cillations in chem i ca l or ecol og ica l systems . Thi s was followed by a discus-

sion of small amplitude weakly nonlinear oscillations which can be regarded as

arising from a change in stability of a stationary solution (critica l point)

as some parameter is varied . When this change in stability occurs because a

sing le conjugate pair of complex eigenva lues crosses the imaginary axis (“over-

stability ”), and crosses at a nonzero rate with respec t to the parameter varia-

tion , the ‘Hopf bifurcation theorem ’ asserts the existence - somewhere in the

neig hborhood of the critical point in the phase space and the crossing point

in parameter space (‘bifurcation point ’) - of a one-parameter family of peri-

odic solutions might not occur all for the same value of the parameter (the

bifurcation value); the latter indeed happens for an exactly linear system ,

as well as some nonlinear ones. With some additional hypotheses abou t the

nonlinear terms , amounting to the statement that in an appropriate sense some

quadratic and/or cubic terms are genuinely present , one can be sure that a
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periodic solution wi l l  occur for each value of the parameter sufficientl y close ,

on one side or the other (but not both), to the bifurcation value . Furthermore ,

if the bifurcation point is one at which a stable critica l point loses its sta-

bility, and if the family of periodic solutions occurs on the unstable side

(‘supercritica l bifurcation ’), then at least close enough to the bifurcation

point the periodic solutions wil l  be stable.

This theorem is the formalization of techni ques which have been used very

extensively to calculate small amp litude oscillations in many kinds of systems ,

some of them infinite dimensiona l like convection in rotating systems or hyd ro-

magnetic dynamos .

The second lecture began with the presentation of a convenient way to

organize the calculations required to study a Hopf bifurcation , and illustrated

this with an examp le. After this , attention was directed to singular perturba-

tion techni ques which can be used to study certain strongl y nonlinear oscillators.

Two major types were distinguished , relaxation oscillators and Flatto-Levinson

systems. Both refer to singular perturbation systems of the form

~~

E4 ~~3(x~~j , E )

where x and y are vectors of dimensions n and m say. In both cases the x , y

phase space contains an invariant n-d i mensional submanifold , the ‘slow manifold’ ,

given asymptoticall y for E 3 ~Ob y the equations g(x ,y,O) = 0. 0ff the slow mani-

fol d y must vary rapidly. In a typ ical relaxation oscillator the slow manifold

is folded over so that if g(x ,y,O) = 0 is solved for y, y = h(x), then for at

least some range of x the solution is multiple valued — often tri ple valued :

y = h÷(x), h0(x), h_ (x). Typically, though not invariabl y, the portions of the

slow manifold given by h+ (x) are attracting, while the middle sheet y = h0(x) is

not. Relaxation osci ll a ions may occur when the motion on a stable part of the

slow manifold , described approx i matel y by x = f(x ,h÷(x),O), say, always leads

eventuall y to an edge where this portion connects to y = h0(x). When this point

is reached the trajectory jumps rap idly over to the other stable branch y = h (x)

and then moves along this portion to another edge , where it jumps back to the ori-

ginal sheet y = h+(x). Of course this process need not always tend toward a

closed orbit , but when it does we get a limit cycle of relaxation oscillator type .

In many interesting examples the motions on the slow manifold can be approx i matel y

determined fairl y eas i ly , and from this a reasonably satisfactory desc ription of
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the oscillator can be constructed. Such oscillations are characterized by the

alternation of short periods of rap id transition (‘fast phases ’) with longer

period s of slow evolution (‘relaxation phases ’). The details of the rapid tran-

sition are usuall y none too simple , however , and a full asymptotic descri ption

is often remarkabl y comp licated , even in the simplest examples.

The Flatto-Levinson theorem is not particularl y concerned with a folded

slow manifold , but with situations where on the slow manifold for one branch of

it) y = h(x) there is a limit  cycle solution of x f(x, h(x), 0). It is also

assumed that at least nea r this lim i t  cycle the slow manifold has a ‘hyperbolic

structure ’ , meaning tha t gy (x,h(x), 0) is non-singular. Thus we are here con-

cerned with a singular perturbation of a limit cycle. The theorem asserts that

for small ~ there is also a periodic solution of the full system , whose orbit ]
is close to that of the lim i t  cycle of x = f(x, h(x), 0).

The third lecture began with the presentation of the application of the

Flatto-Levinson theorem to fir .~ ing the lim i t  cycle solution of a model chemical

oscillator (the ‘Oregonator ’). This was followed by a discussion of some topo-

logical method s for showing the existence of periodic solutions , mainl y the Poin-

care’-Bendixson theorem in the p lane , and the sequential box method of showing the

existence of fixed points of the Po i ncaré~ map, which has been successfully used

in certain hi gher dimensional cases. As an examp le the Hastings-Murray treat-

ment of the Oregonator was sketched . Finall y certain methods for the numerica l

calculation of periodic solutions , and some questions of numerical anal ysis espe-

ciall y relevant to find i ng unstable periodic solutions and dealing with stiff

systems like relaxation osc ill ators were touched upon. ]
MEL ‘ ‘IG ICEBERGS

Herbert E. Huppert

Each year 10 17 cubic metres of ice melts into the Wedde ll Sea . It can be

argued that the m eiting takes p lace primaril y along the sides of the icebergs.

Previou s studies have led to two inconsistent suggestions: 1) tha t the relativel y j
fresh me l twater rises in a thin boundary layer up the side of the iceberg without

any si gnificant mixing with the ocean; and 2) that the Grashof numbe r based on

the total depth of the iceberg is so large , of order 10 17 , tha t the boundary

l ayer entrains a large amount of salty ocean water and the resulting m ixture

j
--
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rises to the surface. A stud y by Huppert and Turner indicates tha t there is a

third and , in their op inion , more probable process. They argue that both of the

above suggestions neglected to include the effects of the existing salinity gra-

dient in the Wedde ll Sea. Modelling the melting in a series of laboratory exper—

iments , Huppert and Turner found that the me l twater moves throug h the boundary

layer and propagates mainl y horizontall y. The ambient fluid supplies the heat

for the melting, sinks in the surrounding density gradient until its buoyancy

force becomes zero and then turns into the interior. The melting thus generates

a series of layers , of thickness h say, containing reg i ons of i nwa rd l y flowing

ambient fluid and outwa rd l y flowing me l twater mixed with ambient fluid. A movie

and some slides were shown , some of the latter being copies of fi gures presented

in “Melting Icebergs ” by H. E. Huppert and J. S. Turner , Nature , 271 , 56L+0: 1~6—

~i8 , January 5, 1 978 , Experiments with different salinity gradients indicate that

when the Grashof number lies between 105 and 108 the layer thickness is g iven by

h = O.66~~p/~

where l
~
p is the density difference between the meltwater and the ambient fluid

evaluated at the mean salinity in the water column and is the vertical density

gradient due to salt. It is planned to perform experiments extending the Grashof

number range in the near future .

Finally, it was observed tha t the heat generated by the audience during

the two-hou r lecture would have greatly accelerated the melting of any iceberg .

SMOOTH EQUATIONS FOR ROUGH PROBLEMS

Joseph B. Kelle r

By a rough problem we mean a problem involving irregularly fluctuating

or rapidly varying functions. Such problems arise in the analysis of wave prop-

agation in random media , in the generation of magnetic fields by conducting

fluids in turbulent motion , etc. Because of the difficulty of analysing such

problems , it is desirable to rep lace them by prob l ems involving only smooth

functions. The resulting smooth equations can then be t reated much more com-

pletel y than can those of the ori ginal problem. This goa l has arisen in many

different contexts and has been attained by various methods. Many of them in-

vo l ve some kind of averag ing , such as spatial , tempora l , or ensemble averag ing,

or ~ comb i nation of them. Other method s involve the introduction of multiple

spatial and/or tempora l scales.
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In this lecture two different systematic method s are presented for ob-

taining smooth equations. One is the so-called smoothing method , which has

been used widely for abou t 15 years. It is usually based upon stochastic or

ensemble averaging, but it can be used also with other kinds of averag ing. The

basic assumption underly ing it is that the fluctuations in the g iven functions

and in the solutions are small.

The second method is that of using multi p le space and time variables ,

each corresponding to one of the scales of variation of the solution . The 9
assumption upon which this method is based is that there is a great disparity

between these different scales. For examp le the given coefficients may vary L
rapidl y, but the main part of the solution may vary slowly. Then equations for

this slow l y vary ing part are obta i ned. The results can also be described in

terms of a suitable spatial or tempora l averag ing procedure .

Finall y it is shown how the two methods , tha t of smoothing and tha t of

multi ple scales , can be combined . This combination simp lifies some of the cal-

culation in the multi-space method , and is app licable when tha t method is

applicable.

As an examp le the two method s are app lied to the equation governing a

magnetic field in a conducting fluid undergoing turbulent motion . Each method

leads to a dynamo equation for the large scale magnetic field.
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STAT I STICAL DY UAM ICS OF THE LORENZ MODE L

Edgar Knobloch

1 . Introduction

There are two basic approaches to the problem of turbulence. In the first ,

one seeks to obtain statistica l solutions to the equations of motion by taking

repeated moments of the equations and using some kind of a closure scheme to close

the hierarch y of moment equations. In the second , one solves nonlinear diffe r-

ential equations obtainable from the equations of motion , that have no exp li c i t

stochastic element in them , but that can , for certain ranges of values of the

parameters , exhibit apparently random solutions owing to the appearance of a

strange attractor. Both methods are assumed to be relevant to the problem of

“turbulence ”, althoug h the connection between the two is not i mmediatel y clear.

In the first part of this paper we shall consider the most famous examp le

of a system of equations with a strange attractor. These are the Lorenz (1963)

equations , derivable from the first nontrivial truncation of a modal expansion

of the equations for Benard convection in the Boussinesq approx i mation . The

equations may be written in the standard dimensionless form

°~
(- i  ~~~) (I a)

- 
~~~~~~~~~~~ (l b)

- 

~~ 
1..

~~~~ 
(ic)

Here the variable x measures the vert ical convective ve l oc i ty . y the tempera-

ture fluctuation , and z the mean convective temperature gradient: o~ is the

Prandt l number of the fluid , y is a reduced Raylei gh number (r = 1 for the on•

set of convection) , and j~i is related to the wavenumber of the convection rolls.

If o~ and ~) are fixed at 10 and 8/3 respective l y (the values ori g inall y used

by Saltzman (1962)), and r is gradually increased , it is found that at r 2L~.74

the solutions to the equations become unstable accord ing to the linear theory .

althoug h there exist finite amp litude instabilities already for r > 21 . The sys-

tem is then in the ‘‘ turbulent ’’ state.

In the following section we shall app l y to equations (1) the techni ques

used in the first of the above approaches and shall compare the results of such a

calculation with the numerical evaluation of certain statistical averages of the

solution carried out by Lt~cke (1976). We shall find good agreement between the

- 1
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theory and the numerical resu lts. We hope in this way to show that these two ,

appa rently qu i te unrelated , approaches to turbulence theory are in fact closel y

related , and to suggest that both methods are useful in contributing to our un-

derstanding of the physics of turbulence .

In the second part of this work we examine the variational prob l em for

the Lorenz model , and suggest a new and potentiall y very useful method for carry-

ing out an approx i mate statistica l mechanics of the Lorenz model and other sys-

tems with strange attractors .

II.  Statistical dynamics of the Lorenz model j
In this section we shall be concerned with calculating various time aver-

ages of the solution to equations (I) in the turbulent reg ime .

From the equations it is easy to show that

~~~~~~~ (2)

where the angular brackets denote time averages. Throughou t what follows , we

shall assume that the solutions of (I) in the turbulent reg ime are ergodic. Thus

we shall assume that we may identif y averages over an ensemble of realizations

of the solution with time averages in any one realization . In particular we shall

assume that the solutions are statisticall y stationary . There is amp le evidence

for this property from numerica l investi gation , but a ri gorou s mathematical

proof of this property is not available. As a consequence of this assumption

all time derivatives of averages vanish. By writing down quantities of the form

<.I~ < ~~. i- -
~~

-
~~~

- ‘j 1~ 
-

~~

-

~~~ 
•
~~~~~> 

C (3)

and using equations (1), it is possible to obtain an infinite number of relations

between various averages . One obtains (cf . Ludke 1976)

/~ (1+a)

V ‘
~~~~
‘ (4b)

— (4c )
— V~~~~~~ 7 (l +d)

(4e)

~~ . (4f)

These relations have been verified numericall y by Lucke (1976) , providing fur-
ther evidence for the v alidi ty of the stationar iness hypothesi s. From equations

j
-
~~~1
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(4) one obtains an important identity

<(~~-x)3 : v[(r-I)<~>- (f>]. (5)
An equivalent result has been given by Ma l kus (1972):

< > ~~v K V ( r - ) ) - -~ -~ ~~~-~- --v  (~~~~~~~~>) .>  (6)

Since 4x~ >~~< ’~c.-~f) is the convective heat flux , this result shows that the heat

flux transported in turbulent convection has to be less than that transported

in stead y convection (x. 0 , ~ <~~~
.) . This important result is derived by

another method in section I I I .  In particular equations (5) and (6) show that

(r- i)~ � (r-.i) <~~> ~ (7)

with equality only in steady convection .

It is to be observed that the number of relations of the type (3) is in-

sufficient to determine all the averages. For examp le , the relations (4) only

enable one to express the low order moments in terms of the two unknown correla-

tions <.~~> , and <p ’> , that are constra i ned only by the i nequality (7). Our task

will  be to calculate these two moments , and other such essentual moments.

We shall use the genera l method for solving stochastic differential equa-

tions with rap idly fluctuating coefficien ts (Ban Kampen 1974 , 1976). Suppose

that we have a stochastic differential equation of the form
l~,p O~4 ~~~~cLt “ ‘ T ~

where L(t) is a stochastic matrix. If L0 is the mean of L , and L 1 = L—L 0 is the

rap idl y f l uc tua t ing  part of L that need not be independent of f , then the mean of
he process f , <f >  , s a t i s f i e s  the equat ion

~~~~~~~~~~~~~~~~~~~~~~~ {L
~~~+çdt K ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (~)

In order to app l y this theory to the Lorenz model we rewrite equations (I),

by eliminating y, in the form

-
~~ 

-
~ 0 ( 10)

where 
~~. a - [ r - l —  <.~~‘), 6 ~~+i ( I I )

~, (t) — (12)

and .4, p ~ -

~~~~~

-. (-
~~~~~~~) 

+ (13)

Equation (10) is thus an equation of a linear “oscillator ” w i t h  a zero-mean fre-

quency modulation o.(t). The quanti ty ~. is always positive definite as can be 
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seen from the i nequality (7) . To the author ’ s knowled ge the present method has
not been app l ied  to a damped s imp le  harmonic o s c i l l a t o r  w i t h  a random frequency
component. The onl y treatment of such a system h i therto  car r ied  out has been
done by Bourret (1 97 1) us ing the so-ca l led  Bourret ( 1962) integra l equat ion .
Howeve r th is  equat ion is not a se l f - cons i s ten t  approx i mation for short correla-

t ion t imes (Van Kampen 1 974 ) .  We know from numerical studies that in the tur-

bulent reg ime the quantities x and z are both rapidl y fluctuating in time . This

can be seen for example in the pape r by Robb ins (1977) dealing with the equa-

t ions for the d isk  dynamo w i t h  a shunt , which can be transformed into the Stan-
dard Lorenz form (I). (~-5 ( t~ is thus a rap idl y f luctuat ing zero-mean random pro-
cess.  In order to c a l c u l a t e < - 2~ , we sha l l  ca lcu la te <2c ) from equat ion (10 ) .

W r i t i n g  i t  in the form (8) ,  we obta in

r
~ 1 0 H ~~

~. ( , ~~~: 0 0 (14)

L I L —2 irj L oj

In order to app l y equation (9), we have to calculate the qua ntity exp I

This can be done most ea sil y in the following way. Observe that f = f0 expi.-t

is  a so lut ion of the set of ord inary d i f f e ren t i a l  equations

(15)
Seeking so lu t ions  proport ional to exp st , we can ca l cu la te  the e i genva lues S of

the system (1 5) .  They are g iven by

( 16)

The general solut ion to the system (1 5) is then a superposi t ion of these three

funcamental so lut ions : ,.- .~. i,~~ )  
(l7a )

The corresponding express ions for f 2 and f 3 fo l low from equation (1 5)

t
-(~ ÷~~~)C~~ )  ( 17b)

~~~~~~~~~~ +( -(,-~~~-&)~~~t +(
~ ~~~~~~~~~~~ ). ( 17c )

If the coefficients A , B , C are now eliminated in favor of f1 (o) , f (o) , f3 (o)

equations (17) can be written in the form 
~ 

(t ) = SHfj(o), where S exp L0t is [
known . The following elements of S will  be required in wha t follows : 

-- . - - --
~~- - 
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A~~~t [ 2 & f lh x t + ( 2 Q~~~~~~ coi h~~tJ (l 3a)

~~~~~~~ 2 t[ A s ; n~iA t ~ .4y to,J,,~ t) ( 1 8b)

A~s ,3 - [c~sh~~t -  iJ ( lSc)

X ~~~~ : “t ~~~(co5~ ~~t-i)t& A s 1nh ~ t) (l 8d)

5 2~~:~~~~~
t
~~~~~4 ul tt c~c~~~ t] (l 8e)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~t] ( lO f )

The quant i ty  exp - L0t is obta ined by changing the s i gn of t in the above ex-

pressions. Evaluating the expression on the rig ht side of equation (9) using

the results (14) and (18), we obtain finall y the equations

(19a )

-~~--4x~ ) [Q. t r(1_ fX3)]< 1~[—~r+*a (~~~~o < X ~~~)t <~~~
’
) (l9b)

~~~~
-<

~~5~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (l9 c)

00

where

~ :r ~
r T  h~ V,,& J c ~Z~ ( r ) s i n ~ xr~~~5dt~ ( r ) , (20 )

and is the autocorre lat ion function of the process L. (t ) def ined by

~~C t — t ’) ~ ~(r). ( 2 1 )

We have again assumed that the process w(~ ) is s ta t i ona ry .  In wha t fo l lows  we
shall assume that c~~(t) has an autocorrelat ion function that f a l l s  off suffi-
ciently rap idly tha t the quantities o~ , ,4 , are we l l  def ined . As we are assum-
ing tha t the process x is also stationary we shall set the time derivatives of

the correlations equal to zero. From equations (l9b) and (19c) it then follows

that
(22)

An examination of the definitions (20) suggests the approximation

(23)

valid for correlation times tha t are short , but not too short , as observed in

the numerical results (Robbins 1977). It then follows tha t

is the condi t ion required for s t a t i s t i c a l l y  s ta t ionary  so lu t ions.  This cond i t ion
gives the “strength” of the fluctuations , or the energy inpu t requ i red on average
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to counterbalance the damp ing term . Thus (24) is an examp le of a fluctuation -

d i ssi pation theorem for an equilibrium system. The other root of equation (22)

is negative and therefore unphysical. Or substituting the condition (214) into

equation (l9b) we find tha t ii, the stationary state

(25)
This is the usua l result that the mean kinetic energy is equa l to the mean po-

tentia l energy .

We now apply these results to the calculation of certain statistical

averages. Consider fi rs the quant ity S’20~~KX >/ .~~x > .  From equations (11) and

(25) we obtain
= ~- [ r - l -  ~~~ (26)

On the other hand , using equation (6), we find

~ -l- (27)

We shall be interested in stud y ing the quantities and defined by

O<~~~
< 1 , (28)

and 
(r-j)(j- 

~~), 0< ~~~~~ (29)

From equations (26) - (29) we obtain the relation

~~ ~/ c~~- i  ~~~~~~~ (30)

Li~icke (1976) has carried out numerica l computations of certain statistical aver-

ages of the solutions to the Lorenz equations in the turbulent reg ime . His grap h

of’Z2)against )‘ for O’ = 10 , and ~ = 8/3 , reproduced here as Fi g .l , shows an

approx i matel y straig ht line of slope sli ghtl y less than one. The slope of the

line for 30 -~~ r <150 is found to be 0.94, and it increases somewha t for larger

r . Equation (3 0) ,  with = 0.06, and ~~ = 10 then predicts tha t ~ = 0.23 ,

in excellent agreement with the numerical results shown here in Fi g. 2. The cor-

responding agreement between the predicted graph of J’10= 0.78 J~~J and Lt~cke ’ s
result shown here in Fi g.3 is not quite so good . L~

jcke ’s results show the same

Raylei gh number dependence , but with a coefficient closer to unity.

We shall define the autocorrelation time of the process w (t) by the

relation ø~~: V
~
(O)Z’

~ . Subs t i t u t i ng  from equat ions (12), (21) and (24) we now

obta in

~ 
- -.i,~ .!.t~ (c-÷i) ~~~~~~~ (~‘-i~~~(;-. ~ 

(31)

or . using equat ion (30) to eliminate ç

- 
1-
-i

~ 

- - - - ~~~~~~-.-- -~~~~~~~- - -~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ 
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(From LLcke (1976))
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~~ 
(3 2)

Suppose that , as a first approx i mation , ~ is independent of r . (cf.Fig.l )

It then follows that .~~ is independent of r , so that from (32) it is necessary

that C r >)/ , with 
~~~~ . independent of r . Recall that ~~ will turn out to

be a small number. Hence

(33 a )

(33b)

The graph S2.,,~ ‘[RT is therefore well matched by

= 0. 10 , ~~~~; ~~~~~~ (34)

This is stil in good agreement with Lucke ’s results. Observe that the dimension-

less correlation time is i ndeed a small number , so that the short autocorrela-

tion time approx i mation required for the derivation of equat ion (9) is indeed

satisfied.

Thus far we have been able to obtain good values of several quantities

g iven one numerical result. However , we have onl y used the equation for x in ]
terms of z. We shall now determine the correlation time L~ self-consistentl y

by considering the equation for z in terms of x. We shall then have theoretical

results for all the four quantities C , ~~

‘ 
, ~ and 

~~~~ 
In order to do the

calculation we shall need to know the quantity \)c 15, which can be obtained

using the same method as used above .

Writing the equations for the five fourth-order moments in the form (8),

we obtain .

N” ~ o

3 0 0

f ~~ )~~X
” 

,, 
° 2~ - ‘2~” ~ ~ (35a)

0 3’z 3~
) 

- 
0 0

C 0 0

0

1 -  0 -20)0 0 0
‘-I (35b)

L

L ~~~~~~~~~~~~~~~~~~~~ _ _
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Again we have to calculate the matrix exp L0t . Proceeding as before we find

that the ei genvalues ~ of L0 are g iven by

5~~~~- 2 ~~- , - 2 1 r ± A , -2&~~iX 
(36)

where again 22 l r +  ~ a . The general solut ion is thus
- 2Xt.

~~~~~~~~~~~ 
~~~~~~~ .t- C~~ ~~~ ~~~~ . (37)

with corresponding results for.f~~t’1, . . . 
f ~~

.. Ct) obtained from the equation

We can write the result in the form
~~~~~~ 

~~
A, ~ ~~~~~~~ 2x t —

4 (ty ~~~. T B~~
. .~ , D~.a. ~~.Q. (38)

where the matrix T has the rows

r e .. ( ‘, ~, \, 1, ~
) 

(39 a )
,.k + A ~~~~ 

Ir
- — z ’ ~i 

‘T 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (39b)

;; 
~~~~~~~~~~~~~~~ ~~;~~~~~.-& ‘t.-fr-~~~) (39c )

,
~
_
~~~~~~~- ± ~~.6~A- 

‘
~~~~-
‘ 

— ~~~~~~~~~~~~~~~k - k ~
1?) (39d)7) ~ ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
÷2~~~~~~ -~~~~~~~~~~~~~A a.trX) (39e )

We can now determine the constants A , B , C , D , E in terms of.~~(O)(.~~ ~,...,S),

We obtain

1~Yil~: ~~~ -~, (o) - /2 a.6’ & 6I~~1r~a.) f, (o) + I~~6~q(0)4 ~~~~ (iOa ’
~

t

+ (-~~A-s&)~~ (0) — (40b)

A.”D 2(&~+ 2&& .’
~i~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1+Oc )

c( x) 8(-?), E ( ~~~a .D(_ x). (14od)
The above relations determine the matrix exp L0t as the matrix of coeffieients

of .
~,tL

o’ in the equations for 
~~~~ (t )  . In order to calculate the ri ght-hand

side of equation (9), let

<Li(t’)€Xp L0D L,(t _t) p — L Ot)~
rLCt’)Y (t)) (Lil ’

where ~~

‘ is a 5 x 5 matrix , and the autocorrelation function of the process

We shall be interested in the correlat ions (.‘#~4� and <X  X 5 .  From

•1
1 

--———-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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equation (9) these are connected by the equations

~~~ KX ~~> (142a)

(42h)

After a considerable amount of al gebra the expressions for ? , and reduce

to —~-~—~~ C05h AY- i)÷ ‘~
_ 

sink )- t”, ?~ 
- 0 (4 3 )

In the statis ticall y stationary state )
~~2, 

w i l l  not be requ i red . Equations (42)

now g ive , using again the approx i mation (23), the relation

(~~~~ - c ~) < X ~ ) 3~~~~ X~’� . (44)

Using the stationar iness condition (214), this finall y becomes

(45)
From equations (la) and (14) it now follows that

i ÷~~~)[(cY-~ ÷ io~~- io+ v)(r_ i) a>- . a (v~. ~ cr~ ~)K~~
t?]. (46)

In order to estimate the autocorrelation time t’,. of the process W , we
now return to equation (13), and write it in the form

(47)
where . Thus equation (47) is a Langevin equation with A (-t)being

a zero—mea n rap idl y fluctuating forcing term. From the forma l solution to equa-

tion (47), we find that

A (e’)A Ct ”)> ~~~ _; 
z;~< A2 ~~, (48)

where we have assumed tha t the forcing term A(t) has a short autocorrelati on time ,

and tha t the p rocess ~~~

‘ 
is statistically stationary. Thu s

~~~~~~~~~~~~~~ ~~~~
. t~[ < x ’> - < ~~>~J . (49)

We shall suppose tha t the correlation times and are comparable. Then 
- -

using the definitions (28) and (29), and the result (46), we obtain

~~~~~~~~~~~~~ ( i +  ~~~~ ~V+ 
(- ~~J)(~-+ —i )t~ (50)

Upon using the results (30) and (33) we obtain a quad ratic equation for

The physicall y meaning ful root of this equation can be obtained approximatel y

by setting

~~~~~~~~~~~~~~~ Z 7 I a ’’2~~). (51) 

--. - 

IlL ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~ -—-
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Although these conditions are not strictl y satisfied for the values of the para-

meters used in Lucke ’s numerica l calculations , they do give the correct order of

magnitude for the correlation time . We obtain

~ ~~~~~~~ (r~~,)~~ 
.
~~- (r-,)

’
~ (52)

for cr= 10 , t) = 8/3. We see now tha t the correlation time does have a weak Ray-

lei gh number dependence; it varies between 0.1)’ L~, > 0.02 for 5O.~ r < 200. This

is in satisfactory agreement with the results (34 ) deduced on the basis of the

present theory and one numerical result. We have thus shown tha t an entirel y self-

consistent theory follows from the app lication of stochastic differential equa-

tions to the Lorenz equations , one tha t not only predicts the correct functiona l

dependence on the Raylei gh numbe r of various statistica l averages , but tha t also

predicts qu i te well the numerical values of the quantities , ~ and S).0 cha r-

acteristic of the solution in the turbulent reg ime . Moreover there is some evi-

dence for the decrease of the correlation time with increasing r in L~cke ’ s

numerica l calculations. For example, the curve of<~~ ~ vs. r in Fi g.) deviates

upwards for large P~’ f rom the stra i ght line defined for smaller values of r
More convincingly perhaps , the approximate formula

-
~~ crI~
~~ q-t a’t,,

shows that ~ decreases with increasing r . Indeed , flg.2 shows a decrease con-
sistent with the P’ ”1”2 behavior. We also predict that for large r , the curve

of ..fl~ vs. ~ should have a slope that falls below unity.

Let us now turn our attention to the quantity .�2~~, also calculated by

- ‘ Uicke. By definition •1~ _ _ _ _ _ _ _  ~~X~4j?~~ ‘iP
_ ) )B

; ~~Z <~~ � Z~~~
’ (5k)

Using the results (28) and (46), the quantity (54) can be written in the form

.t1.~ ~~~~~~~~~~~~~~~~~~~~ i~~~(i +- ~ ) V+2 +a ”v+.a~r) (55)

Substituting for 0.. and <~~? from equation (11) and (29), and using the result

(30), we obtain the result

- -(~~÷ .~o-~ c t  +2a)+
~~
2-

Lj~. 
(v-i). (56)

Since ~~~~~~ I , it follows that for large enough r

~~~~~~~~~ ~~~~~~~~~~~~ 
(57)

essentiall y independentl y of the correlation time ‘C~ . For fF = 10 , i-) 8/3 ,

LUcke finds numericall y that fLa 1.77 . . . VT~~~~. Equation (57) on the other

hand predicts a slope of 8 /9  = 0 . 8 8 8  - exactly half of Li’!cke ’s value. We have

I
_ _ _ _ _ _ _ _ _  _ _  - - -~~~~~~~ -- - -~~~~~~~
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been unable to find the reason for this discrepancy. We note here tha t the re-

sult (57) predicts thatS1~~( r:3O)~~ 10.5 in agreement with Lucke ’s curve and

the mode-cou p ling calculation that he carried out for values of o in this re-

gion . It is at least certain that the formula for the slope in terms of ~ and

) , viz. ~~~~~~~~ -t~1)- ~ , suggested by Lucke cannot be correct.

Finally, there appears to be no way of calculating the quantity
1.-

‘I. ~~ 7 also plotted by Lu cke , using only the fourth order moments calcu-

lated above .

II I .  Variational approach and the statistica l mechanics of the Lorenz Model

Eve r since the pioneering pape r of Howard ( 196 3 ) ,  var ia t iona l methods have
assumed great i mportance in the stud y of turbulent convection . As the Lorenz equa- -

t ions are a truncation of the model expansion of the equations for the B~’nard prob-
lem , it is of considerable interest to app l y these techni ques to this simpler sys’

tern in the hope of testing their convergence and accuracy .

Howard maximized the hea t flux transported by the fluid between two hori-

zontal surfaces subject to two power integrals derived from the equation of mc-

t ion by Ma lkus ( 1954 ) ,  w i t h  the usefu l property that they led to a separable varia-

tional prob l em. In this way he was able to obtain upper bounds on the heat flux

in terms of the Ray lei gh number , but indepe -ident of the Prandt l number.

In the present case we are interested in find i ng bounds on the total heat

f l ux , both convect ive and conductive , g iven in terms of the Lorenz variables by

The power integrals are obta i ned by taking moments of the Lorenz

equations. The first nontribial variational prob l em arises from the following

three constraints:

(58 a )

(58b)

~~ (58 c)

We wish to maximize the functiona l ~~ given by

~59)

where ,~1 1 A 1 , A 3 are three Lagrange multi pliers. The Euler-Lagrange equat ions

are 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ° (60a ) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~~~~ ~~~~~~~ - — ~~~~~~~~~~ A~~~~ = o  (60b)

~~~~~~~~~~~~~~~~~~~ (60c )

From Eqs.(60a) and (60b) and the constraint (58a) we find that

A~~ X~ (61)
From the constraints (58b) and (58c) it then follows that

-
~‘ (r-i) (6 2 )

with the correspond i ng Lagrange multi pliers

- 2 (63)

The result (62) is of course the stead y convective solution to the Lorenz

equations (x = y = z = 0). Hence the maximum heat flux , 2’~ 
(~r - ) ,  is attained

in stead y convection , and in nonstead y (turbulent) convection (within the Lorenz

model) the heat flux transported by the convection must be less. This is in

agreement with Eq .(6). What appears to be happening is that the optima l solution

becomes unstable at large enou gh Ray lei gh numbers , resulting in sli ghtly reduced

heat f lux (c . f .  Eqs . (2 9 )  and (34)). It is as if the system were in fact try ing

to maximize the flux but was being prevented f rom doing so by an intrinsic insta-

bility.

Because the heat flux is globall y bounded by the stead y convection , an

improved bound on the nonstead y convection cannot be achieved by adding more con-

straints - all the infinity of constraints derivable from the Lorenz equations by

taking hi gher moments are identicall y satisfied by the stead y solution .

Two alternative approaches suggest themselves : either bounding from be l ow ,

or using alternative constraints to beg in with. In what follows we shall adopt

the latter approach , since it l eads naturall y to a new and interesting way of

looking at the Lorenz model.

The choice of constraint is dictated by the desire that the steady solu-

tion not be the whole story . We therefore introduce constraints quadratic in x ,

y, z, so that the corresponding Euler-Lagrange equations are now time-dependent.

Let

_ < > _ < X ’ ’> ÷ 2 1~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(64)
where 

~~~~
, X~ , )i.

,, 
are three Lagrange multi pliers. The Euler-lagrange equations

I 
~~~~
-. --

~~~~~~~~~.- --
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A (aCf l  ~~~ :0  (65) ]
ctt 

~~ 
I

can be written in the form

(66 a )

/l2~~ -- ~~~~~~
- (66 b )

(66 c )
where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * A x L .E~ (67)

Thus the Euler-Lagrange equations contain no dissi pative terms , and form a

Ham iltonian system describing the motion of a particle in a comp licated poteri-

t ial V(x ,y,z). The potential V is of sufficiently hi gh order in x ,y,z that we

may expect the kind of chaotic behavior of a particle in this potential that is

described by the Ko l mogorov-Arno ld-Moser theory for such systems . We may there- ’

fore attempt to describe the statistica l mechanics of particles in such a poten—

t ial. Since it is known that the bounding solutions (such as the stead y convec-

tion) are not bad bounds for the unstead y convection , we may hope that the pre- -

sent system approx i mates the Lorenz attractor quite well. By understanding the -

equations (66) it is hoped to gain some understanding of those features of the 
-

attractor that do not depend on the details of its topology. j
Multipl ying Eqs .(66) by x, y, z respectivel y and adding, we find that the

system (66) has a first integra l

~~~~~~~ A ,~~’~+ ~A 2 ~~~A 3~
2 t V (x , 9 1~ ) : K ( a  ~0~ sf4~ i’). (68)

If we now average Eq.(67) and use the constraints , we find that

(69) 
-

~~

This can be considered to be the analog of the virial theorem , and is a general .1

property of the Euler-Lagrange equations for constraints of the form

In order to compute the Lagrange multi pliers , we take x ,y,z moments of Eqs. (66a) -

~~~~ (66-c) respectivel y and use the assumed stat ionariness of the solution to observe

th at <i’X) :: ,.
~~:~~~~

t

� etc. Solving the resulting equations and using the constraint s

we obtain 
-

r r r<~~~ >-(r~z)=< K >
~~ 

(7~a)

(70b) J
I 
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(7 0c)

In order to stud y the statistical mechanics of particles moving in the

potential V(x ,y,z), we define the probability distribution function

p (x~~~~;~~~~ i ) ~- 1/ 5 d r ~ -’~
6 

(7i)

where P is the 6-dimensional phase space , and / 3 is the inverse of a “tempera-

ture ” tha t can be related to the Ray lei gh number r by the relation

______  - K - (72)
JL ’~Cdp 

- 2,~3

The p robab i l i t y  d i s t r i b u t i o n  p is we l l  def ined onl y when the ‘k inet ic  energy ”
and the potential are both positive definite. It is therefore i mportant to eval-

uate the Lagrange multi pliers (70), by using the prescription

<. ..> :Jd P ~~~~~~~~~~~~~ (73)

The resulting multi p liers are then functions of 4 ; Eq.(72) shows tha t~~~ is

known if the constant of motion K is known . This can be obtained from Eq .(69)

by evaluating the averages in (69) using the prescription (71) and the results

for the Lagrange multi p liers. Equations (69) and (72) are thus an integral equa-

tion for /3 in terms of the parameters of the Lorenz model , in particular the

Ray lei gh number r. Unfortunately it appears tha t K cannot be unambiguously deter-

mined from the steady convection solution because of divergence in the Lagrange

multi pliers. These arise because the constraints become meaningless for the stead y

convection . The next step in the calculation is the investi gation of the exis-

tence of a possible phase transition at some critical A (corresponding to a

critical Rayleig h number) by means of the usua l thermod ynamic relations (Landau

and Lifsh itz , 1969)
0, (r ~~/ 3 ” ) ,  (74)

where the “pressure ” p has to be calculated from the free energy F g iven in terms

of the partition function ?~ J..~
”3
~

’dP by
(75)

Unfortunatel y due to the difficulty of calculating the partition function

and other ensemble averages (73) arising from the high degree of the potential V

we have thus far been unsuccessful in carrying throug h this program. This diffi-

culty is inherent in the problem because l ower order potentials wi l l  not have the

stochastic behavior predicted by the Ko l mogorov-Arnold-Moser theory . It is also

possible that the bound i ng equations are too poor at low Ray leigh numbers , so that

no discontinuity in the statistical properties is required by the sudden appearance

of the strange at t ractor  in the Lorenz system .
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IV. Discussion

In this pape r we have seen tha t some systems with strange attractors ,

such as the Lorenz model , can be treated by standard statistical method s tha t

are used in treating “noisy ” systems . We have seen that these methods predict

the correct functional dependence of certain statistica l averages on the Ray lei gh

number r , as well as g iving the correct amp litude to a good accuracy . In this

way we have shown tha t strange attractors and ‘noisy ” systems , while apparently

dissimilar , can have a good dea l in common if one is interested onl y in their

statistical properties. Indeed it is likely that the ori g in of many stochastic

systems lies in hidden nonlinear systems with strange attractors , and it is

therefore necessary to know that the details of the process producing the fluc-

tuations are irre l evant for the gross properties of tht system.

In the second part of the pape r we have suggested a new way of looking at

the Lorenz model and related systems with strange attractors. Althoug h we have

thus far been unable to carry out the details of the calculations , we have seen

tha t such systems can be approximated by conservative systems for which the whole

machinery of equilibrium statistica l physics can be employed . In this way it ap-

pears possible to calculate an approx i mate probability density distribution pCi”), Jwhich can be used to ca l culate any desired statistical property. Thus a wealth

of new statistical properties could be investi gated that is inaccessible to both

numerical ana l ysis , and the method described in the first part of this work.

In conclusion we discuss the implications of the ca l culations presented

here for the Lorenz model to rea l turbulent convection . The first question that

is well illustrated by the Lorenz model is whether the heat flux in convection is

maximized by a laminar flow (Busse 1969, 1970; Howard , 1972). This thus far un-

resolved question has i mportant consequences because it appears tha t in astroph y-

sical situations the optima l heat fluxes are never realized . The question then

arises whether due to instabilities of the laminar solutions a finite gap is

created between the maxima l heat flux and tha t achieved by turbulent motions .

A promising aspect of the discussion in section Il l  lies in its app lica-

tion to B~nard convection , described by the equations

1- L~~
p_

~~~ TI~ 
(76)

— p 
(77 )

.~. ~~ .v T ~~~~ 1V ~~T
*
, (78)

.1
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where T’- = T + T~ , ) is constant , and the remaining symbols have their usual

meanings (Howard 1963). The boundary conditions are T:~(o) = T0, T~ (d) = To-L~T,

u (o) = u(d) = C’ . F rom Eqs.(76) - (78) the follow i ng two-dimensionless con-

s t ra  in ts  may be de r i ved

5 (79)

< . ~~~T>~~ Kt ~~’, + ~~~~~~ (80)

where u has been scaled by k d , ~ by d 2/1< , T by A T, and

(8 1 )

Here ci,r~ is the vertical convective vel ocity, and the angular brackets denote an

average over the whole convecting layer , while the horizontal overbar indicates

a horizontal average. In what follows we shall find it useful to include in both

averages also time averages. We note here the appearance of the parameter ~ R

rather than just R as in the variational problem considered by Howard (1963). This

appears to be the first time that it may be possible to obtain ri gorou s bounds on

the heat flux as a function of the Prand tl numbe r ~~
“ , a result tha t would be of

considerable importance , particularly for astroph ysical convection . For max imum

Nusselt number
N~~~ i÷ <~,T? (82)

we obtain the Euler-Lagrange equations

o (83a )

= 0 (83b)

2A~~.r-A~~
’ -~~~~~~ i- T (  ?~4~~Rl~~ .9 X 1< Tar) - 

~~~~T ( ’ 1 + < tw . >_ 7 ¼a Tw.) ~~O (83c )

= 0  (83d )

The Lagrange multi p liers are g iven by

X,a-R[< t~>+<u.r~
’>c.u’T~- (wT �- ~~~~~~<cu~~ >

(84a)

T~>~4. <~ P7.><W.T - <c ~.rTw~T? - 4cij.’T ’) 2 <‘c~i7). (84b)

Equations (83) can be combined to give

‘
I 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 , (85)
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which can be written in the current conservation form[
~ ~ ~ 

.
~~] 

q o. (86)

Thus the problem of convection is not too different from the Lorenz model , al-

though the presence here of partial differential equations greatl y complicates

the calculation .
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Appendix

The Lorenz model is a special case of a particle moving according to the

equation .. .

(Al)

where V is a fourth order potential in x , with coefficients that obey an equation

of the form
A ÷ - *~t ~:~~- ( ~() , (A 2)

so that the system is provided with a feedback (Sp iegel , 1978). The generic (in

the sense of Thom fourth order potential is

(A 3)
The Lorenz model can be shown to be equivalent to the above with *0 . It is of

some interest to know whether the methods described in section 11 can be applied

to the generic potential (A3).

In this case Eq.(lO ) becomes 
-

~
‘t (l+o-) ~~. t[—&.s~A( td ~ 

. k (A4 )

Now~~X no longer vanishes; writing (A14) in the form

d fx \ / 0 1 \ ,‘ x /o

~~
(
~) 

~~~~~~~~~~~~~~~ 
-
~
-)
~~~ 

1.(*) ( A 5)

and proceeding as before , we obtain

(A6 )
For a stationary system , with the approx i mation (23) J

J
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(A7~

Similarly the second moments satisf y the equations

~~~~~~~~~~~~~~~~~~~~ (~~~~~~2~~ )<~~~~> (A8)

< > +  (~
- ~~~~~~~~ )<~~~

z
) 4

~~~<X) 
= 0 (A9 )

One can now proceed as before , and get a necessary condition for stationarin ess

by e l iminat i ng <j2> , <~
(
~~> and < X >  from the above equations. That condition

is now much more complicated than the condition (24), and does not lead to a sim-

ple quadratic equation for<’~~~ like Eq.(3l). Nevertheless the method can be

relatively stra i ghtforward l y adapted to this generic case.
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I N V I S C I D  EQU I L I B R A T I O N

Josep h Pedlosk y

This sem i nar first briefl y reviewed the genera l nature of the weakl y

nonlinear , finite amp litude dynamics of unstable waves. .4 general distinction

was drawn between two classes of prob l ems . In the first for a g iven spatial

wavenumber , the linear stability threshold of the basic state is g iven by a

critical parameter F~ which represents the point where energy extraction by

the instability just balances dissi pation acting directl y on the unstable mode ,

The sli ghtl y nonlinear extension of linea r theory then g ives the Landau equation

for the disturbance amp litude A , as

~~~~~~crA-N A
3

dt D

where 0 is the linea r growth rate and N0 is a numbe r (in genera l comp l ex)

determined by the theory (see Stuart (1960) and Watson (1960)). The amplitude

evolution equation is not reversible in time and if Rea l (N) 0 the amplitude

evolves monotonicall y to a steady state.

In the second class the linear stability threshold is determined by a

balance between a stabilizing inviscid constraint and the destabilizing inviscid

mechanism associated with the instability. In this case the energy extraction

is proportional to the rate of change of the disturbance amp litude rather than 
- .

the amplitude itself. The generic form for the supercritica l inviscid amplitude

evolution equation is then

.4~_ =c~A-t’/1A~~(A)
where again , ~ is the linear g rowth rate. B(A) is a quadratic function of A

and N 1 is the inviscid equilibration coefficient. For an examp le of meteorolog i-

cal i mportance see Pedlosk y (1970) .

An examp le of therma l convection in the absence of dissi pation was dis-

cussed. The convection is inhibited entire l y by a uniform , horizonta l magnetic

field B0 and for the purposes of illustration the convective mot i on was assumed

to occur in rolls oriented at rig ht angles to the mean field (althoug h rolls

along the field would in fact be unaffected by the field). If
8~
2.

T~~~~

where B
~ 

is the mean field , I the layer depth , E~ /a~ the unstable mean gradient ,

arid ,LL the magnetic permeability, then the critica l value of I for a cell of

wavelength Zi~/x is 

~~~~~
_- 

~~~~ - - • —-~~~~ -~~~~~
- • - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
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where iii is the vertical mode number. For sli ghtl y supercrit ic a l states

~~

the amplitude of the convective cell was shown to satisf y

- 

~~~~~~~~~~~~ [B~-3)~ i 0

where
2.

o. __ • _ ~
(~~Z

”
t rn~~ri 2)

so that the magnet ic field of both the mean and the perturbation undergo long

period oscillations if IV > 0  (~c~~< 3 m
3

11’3
) .

The presence of a small amount of dissi pation was shown to lead to a

third order set of equations , which it was pointed out , can be transformed to

the set first discovered by Lorenz (1963) and which allow both stable li m i t

cyc les  and pe rs i s ten t  aper iod ic  motions.
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MAGNETIC FLUX ROPES AND C O N V E C T I O N

Michael R.E.  Proctor

In order to understand the observed in te rmi t tency  of the magnetic f lux

st ructures (usuall y called ropes or bundles ) that tread the solar convection

zone , it is necessary to take account of the mutual interaction between fields

and f lows . The k inemat ic  aspects of f lux  concentrat ion by pers is ten t  inexora-

ble motions are we l l  understood (Weiss 1 966 , 1 977 ; Busse 1975 ) :  the f lux  is ex-

pel led from reg ions w i t h  closed s t reaml ines  and concentrated in their boundary
— II~layers of B thickness RM L , where IS,.: UL/ 1, is the magnetic Reynolds number

(U and L are ve l oc i ty and length scales for the convection c~ and fl,, is the

magnetic diffusivity). Since flux is conserved in the concentrat ion process ,

the peak field B1~ in the ropes is of order BoRm where B0 is the mean vertical

field. Such strong fields are certainly dynamicall y i mportant: indeed , near the

_
~~
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surface of the photosphere B~ appears to be so strong as to be approaching the

upper li m i t  ~3p ’/2 p f1~ (where ,.u. is the permeability and the external pres-

sure) set by consideration of norma l stress across the edge of the flux rope .

Deeper down in the convection zone , thoug h , pressure differences between the

rope and its surroundings are less si gnificant and another type of dynamica l

effect is possible. The Lorentz (jA B) forces , where j is the current density,

can act to impede the flow near the flux rope , so that the local magnetic Rey-

nolds number (and so the amplification of the fluid) is less than for weak

f i e l d s .  It seems poss ib le  that the rate of a m p l i f i c a t i o n  w i l l  decrease so fas t
with increasing flux that the peak field cannot exceed some globa l maximum Bm
as a funct ion of the f l ux .  To in~ .s t i gate th is , Gal loway ,  Proctor and Weiss
(1978) considered a simple problem for an axisymmetric cy lindrical geome t ry

in which a basic incompressible flow is confined to a cy linder of heig ht a and
radius of order d and is driven by a prescribed body force. If there is no

field j~ ~U0 and the confi guration is defined by the two dimensionless para-
2. 2.meters S L..

~~~ 
... CL’0 ) L  

~~~~~~~~~~4% - 7,
where L is of the same order and is the density and i) the kinematic vis-

cos i ty of the fluid. Rm is large and the flow is such as to concentrate flux

at the base 
~~ 

0 of the cell is a measure of the amplification in the kinem at ic

li m i t  (~~~~C ). The problem can be solved exactly in this limit since the axi-

symmetric flux rope formed on the axis only affects the flow in its i mmediate

vicinity provided that ‘
~~~ is not so large that the rope is no longer thin.

The main result of the ana l ysis is an explic i t form for B~ the peak field at
-
~ ~~~~~ 

, the base of the rope , namely d 2

- 

r~ B0
RM * e

2d #/~~ ( e ~~~~~
where ,‘. : ~~ R~ and f~ 

(1~~, is  the bas i c  v e r t i c a l  f low on the a x i s  of sym-
metry.

From this it can be seen that B~ reaches its maximum 6m as a function

of ‘ when ~ ~ ~~~~~~~~~~ ~~~~ These resu l t s , wh i l e  paving the way for the
solut ion of more comp licated problems (see elsewhere in these notes), can also

be used to give roug h es t ima tes  of the s i zes  of f i e l d  to be expected at var ious
deoths of the convection zone. (Galloway, Proctor , and Weiss 1977.)

• ‘I
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A CONVECT IVELY DRIVEN DYNAMO (Lecture #1)

Andrew Soward

There are reasons to believ e that the geodynamo is the result of ther-

mal convection in the Earth ’ s liquid core . Perhaps the simplest model which

isolates the influence of rotation on convection , is that of a Boussinesq fluid

conflned in a plane layer of width L , rotating with angular velocity .S2. abou t

a vertical axis , heated from be l ow and cooled from above . When the Ekman number ,

Zn- - ?_ .ce z — -, — — —

L

.1.
,, ,,,l_# ,,,,. _/ , ,

where V is the kinematic viscosity, is small , the onset of instability is char-

acterized by convection cells with short horizontal length scale of order

-
~~ E ’/’ L . Owing to the two length scale separation (€“ L. ) , this model pro-

vides a convenient starting point for the anal ytic development of a hyd romag-

netic dynamo.

With a suitable choice of boundary conditions the linear solution de-

scribing steady convection can be represented as the sum of N-rolls , for which

the vertica l veloc i ty takes on the simp le form
N ~k cTh.z 

~~1~l)c,~,,r 
~~ 

W~
”
~~~in fl~ e 

— 
-~~ ~.c- (~ ~

Here is the vertical coordinate , k (n) is a horizontal wave numbe r , kc i5

the critical wave number describing the onset of instability and c.c. denotes

the complex conjugate of the expression preceed i ng it. Finite amplitude solu-

tions of this type together with thei r stability have been discussed by KCippers

and Lortz (1969) for the case of infinite Prandt l number.
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When the fluid is electricall y conducting the development of a skewed ,

horizontal magnetic field 
~ H ~~~~~~~~~~~ is governed by the dynamo equation:

~ ~~~~~~~~~~ ~
where t is the time , 3 is the unit vector in ~-d i rection , ‘7, is the magnetic

diffusivity and the components of the tensor ~~ are

— ~~ b 
~) 

k~~~~~~~~~ L v~ 2 7T~~.
cv’)

Here I”~ 5 i V ~ 2?T~ is the contribution made by the nth roll to the horizonta l

average of the he l icity u0.curl u. In our model , the boundaries are supposed to

be perfectl y conducting and so the dynamo equation is solved subject to

f ~~~~~~~~ ~~o ~~~~~ ~~~ on

Provided that there is more than one roll (N 
~~‘ 1) and that the motion is suffi-

cientl y vi gorous magnetic field regeneration is possible. The results of Childress

and Soward (1972) and Soward (1974) indicate that , once the influence of the

ensuing weak Lorentz force is taken into account , the preferred mode of convection

is a roll whose axis is norma l to (wave vector * is parallel to) a wei ghted

-average of BH. The resulting ~ -effect tends to regenerate new magnetic field

in the direction perpendicular to the orig ina l field (i.e. in the direct ion 3X~~ ).

Consequentl y the orientation of both the magnetic field and the most vi gorousl y

convecting rolls tends to rotate on the magnetic dif fusion time scale. In this

way the system operates as an efficient dynamo .

In a limited parameter range corresponding to very weak magnetic fields

Soward (1974) demonstrated the existence of stable hydromagnetic dynamos . For

stronger magnetic fields , however , Chi ldress (1976) has found that the dynamo is

unstable. The reason can be traced to the well-known result tha t , when the mag-

netic field is uniform , the critica l Raylei gh numbe r Rc for the o’set of convec-

tion in a rap idl y rotating system initially decreases with increasing field

strength. For the hyd romagnetic dynamo prob l em the implication is that as mag-

netic field grows so does the vi gou r of the convection . Consequentl y the ~~ -effect

becomes more intense and the magnetic field grows at an ever-increasing rate. One

may speculate , therefore , that the dynamo can only equilibrate when the Coriolis

and Lorentz forces are compa rable. By contrast , Busse (1975) has developed a

similar dynamo model in an annulus rather than a plane laye r in order to represent

more faithfully geometrica l constraints i mposed by the spherical shape of the

Earth’ s liquid core . ~n this case R
~ 

in i t i a l l y increases with increasing magnetic

field strength and so the stability of the dynamo is assured for weak magnetic

fields.

--“- - - • ---- - - - - - -- - -~~~~ - .~~~
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A KINE MATIC THE ORY OF LAR GE MAG NETIC REY NOLD S NU MBER D YNAMO S
(Lecture #2)

Andrew Sowa rd

When a magnetic field permeates an incompressible , perfectl y conducting

fluid , the field lines are frozen to and move abou t with the fluid. If i n i t i a l l y

the magnetic field at position X is b(~ ), then later when the fluid particle

has moved to )~ (~
) the magnetic field is

(I)

If instead the fluid has large but finite electrical conductivity, the above re-

sult onl y provides a correct first approx i mation for a limited time , since the

error increases indefinitel y. To avoid this secular behaviou r it is necessary

to allow the reference field b to evolve slowl y on the magnetic diffusion time

scale. Any rapid development of the field caused by the advect ion of the field

lines is accommodated by the strain tensor a~~./~x;in (1). A further general-

isation of this Lagrang ian descri ption is made by introducing a reference fluid

ve l ocity u(x) so that the actual fluid ve l ocity at ~ is

~~~~ / ar~ ~~~~~~~ (2)

HereX , i.s. (as well as b) depend on both X and time t .  As a result of the

transformations , the magnetic induction equation becomes

/ . .
~~ (i.~~~t~.)+ ~ V~~ —

~j 
VX 

~~
. ~ (3a)

where is the magnetic diffusivity ,
(~. 

~~~ - c 5 )  a ,,/ ô~
(
*

—,M’j &,; , (3 b )

~~~~ ~7X ~~- V .Z.,.a, A4~ (~~~~1( è~~/öx ) (3c d)
and ~7 denotes the gradient w i t h  respect to )5~ -

This formulation provides an especiall y convenient method for considering

Brag insk y ’ s (1964 a ,b) nearly axisymn ietric dynamo model (see Soward (1972), 

_-~~~~~~~~~~~~ - -~~~~~~~~~- 
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Moffatt (1978)). In essence we consider an axisymmetr ic reference flow ,

u = t.J ,~ + (e”;) (4a)

F where denotes the unit vector in the azimutha l direction and the suffix M

denotes the meridional component. Asymmetries of the real flow are accommodated

by the small displacement ,
(4b)

of fluid particles from their mean trajectories , which according to the assumed

form (4a) are almost circular. Direct substitution of (4) into (3) shows that

the reference magnetic field is almost axisymmetric and has the form

~~
- ~~~~ ~~~~~~~~~ O(~ i~~) (5)

Here the asymmetric part of b is represented by the error term and R is the mag- —

netic Reynolds number which is assumed to be large .

On the basis of the scaling in (14), we may take the 0-average of (3)

and leg itimatel y neg lect all averages of products of fluctuating quantities with

the exception of
~~~~~~: -f

~~~~~~~, 
(6a) 

-

where ~, ~~~~~~~
r - ~~~ -j  ~-~~- - . v ~~ -

~
-
~
-)
~~ 

6b

and ...~~ is the distance from the axis of symmetry. Prov i ded ,
~~ ‘

~~:: ~
(
~~~

‘)
there is the possibility that the resulting 0< -effect is sufficientl y large to

prevent the otherw i se i nev i table collapse of the meridional magnetic field.

It should be emphasized that uM di ffers si gnificantl y from the ~ —average
• of the actual (as opposed to the reference) meridiona l flow velocity. Indeed

when the latter average is zero , we may identify u M wi th the systematic meridional

flow of fluid particles (this is the phenomena of Stokes drift). The difference

between the averages of actual and reference quantities accounts for Brag insk y t s 
—

(1961+ a ,b) use of “effective ” variables , which are simp ly u 1~ and b ,,)ntroduced

in (14a) and (5).
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A STRANGE ATTRACTOR

Edward A. Sp iegel

This discussion , based on work done with C. Marzec and with J. -P.Poyet is

aimed at exploring aperiodic behavior in the solutions of the dynamica l system.-ov
where x = x(t) and the potential is a polynomial:

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2)

The differentation of V in (I) is for fixed ..2,, but A has time dependence

which may be specified exp licitl y or implied by a differential equation . We

consider the specific form

(3)

with constant € and ,~~ . It then remains to furnish the r
~
(
*
(i)and ~ (x).

A particular choice corresponds to the model studied by Lorenz ’ . Here , we con-

centrate on the examp le 2’3

~~ a cor ~s t ., 
~ 

x _ %,3, ,U =  0. ( 4)

The equilibrium surface ~V/ a ’x :o plays an i mportant role in the dyna-

mics. In the case of (4) this describes a pleated surface4 in (X ,~~,é’ ) space.
The projection of the pleat onto the A— lp iane is delineated by the cusp,

2~ 
?~/3 ~~ ; this shows the interest in the parameter 3 

~~~ 
A ~~ ‘

Equation (1) can be replaced by the two equations , ~~~~~~~~~~~~~~~~~~~
The flow divergence , ~~ 

i-
~~~~9/~~~~~ + 3?’~./~ A , has the constant value —

~~~~ . Swarms

of representative points in ~x~~~i,A ) - space will condense down to zero volume

exponential l y in time . The sets of points onto which these swarms ultimately

condense are called attractors . Attractors may be stable critical points or

stable limit cycles , for example. When they are sufficientl y comp lex they are

called strange , to use the term suggested by Ruelle and Takens5. Normall y,

strange attractors associated with OOE’ s are found by numerical integration .

But astronomers know that you do not need an ephemeris to stud y the form of an



-
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orbit; it is often valuable to get the time out of the problem.

Let A be taken as independent variable: X (t) x (A),

~ 
( d~~~~ ( )_ ) 

~ +~~(~~
) 5

Then if prime denotes differentiation w.r.t. 2t , (and we d rop the ti ldes) we

find / ~.

~ 
L(~ & x ”+(i-,~)(A +~)x ~~~~~ + ~~~

-.. ~~~~i . (6)

We obtain a standard-looking problem in matched asymptotic expansions whose

study reveals much about the role of g(x) in these affairs. Unfortunatel y, the

inner problem is not easy; in one of the simp ler cases 1 (6) reduces to the equa-

tion for the 2nd Painl ev~ transcendant. This is just the way to describe the

transition from one troug h to another in V in terms of nonlinear turning point

theory (the inner equation is a nonlinear version of Airy ’ s equation).

The traditional asymptotic methods , such as the method of averag ing or

two-timing, are also very enli ghtening . For G <<. 1 the method of averag ing for

the example (4) describes periodic orbits 3. When ~ .62 these are stable but

they lose stability when increases through .62, to be replaced by quasiperi-

odic orbits. When a’ inc reases through .75 , the method no longer works easily

but by combining it with results from (6) we may be able to extend it.

The “transition ” at = .62 suggested by the asyrnptotics is reflected in

a corresponding change in the character of the numerica l solutions . As is

increased throug h .62 the period of the limit cycle starts a series of doublings

corresponding to what are called p tchfork bifu rcation 6s. When cf reaches .625

this doubling is over and the behavior seems genuinel y aperiodic; a strange at-

tractor seems to have formed. In fact , the objec t which corresponds to the at-

tractor appears to exist even for cc~~ .62, but it is not their attractor.

We have studied the form of the attractor mainl y in (E, B , s)-space , where

(3/~)
’
~

’x , /3 2¼ (
~~
/
~~~
)

hh1
, £ = ,~~ ~~~ 

2/~ + v). (7)

To examine the solutions , we construct a Poi ncar~ map, or surface of section , in

which successive crossings of the E-B plane with ~ ~ 0 are marked by a point , and

many such points are accumulated . For = .625 the surface of section is tha t

shown in Fig. ’ for all initial conditions we have tried , apart f rom differences

in transients. If we l ook at the very ti p of one of the “leaves ” dang ling from

the attractor shown in Fig .1 and magnify it manyfold , we obtain Fig .2. The nume r-

ica l integrations available thus far are not sufficient to warrant another blowup, 

— •—~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ •--—~~~~~~~~~~~~~ -,--~~~~-- - - — - --
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Fig . l. Surface of section (s=0) in (E,8,s) space

of the attractor of (l)- (L i) for c~
’ = .625.
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Fig.2. A blowup of the ti p of one leaf of F i g .l ,

showing fine structure .
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hut we conjecture tha t this would only show a repeat , on a finer scale , of the

structure of Fig.2. In other words we presume that the attract or has the struc-

ture of a Cantor set in one of its dimens i ons , much as Henon ’s7 well-known

model does.

The asymptotic stud y of the case (4) revealed that in (E,B ,A)-space

the curve defined by ‘
~ = 0, ~ = o, seemed to p lay a special role. This is true

also for the appearance of strange behaviou r in the numerica l soluti ons. These

statements find a congenial expression in the language of catastrophe theory4.

We may introduce a superpoten tia l 1
oe (A)tr~~~÷, —

~~~~~~ 

X (8)

where ( is to be thought of as a parameter on the same footing as . Now

the condition 9ZJ/c3~ 
— 0 is easil y seen to be equivalent to 

~ -V, hence we
have also that )L 0 and aV/~x :O.These two conditions define the catastrop he

set14 of U wh ic h , for m = 4 , is called a swallow tail. We find that motion of a

system point through the catastrop he set generally involves erratic behavior

even when there is not a strange attractor. When there is one , the attractor

lies near the catastrophe surface , as in Fi g.3, where the attractor ’s surface

es_ O s_
—
I - , I

.

~~-‘
-

lo se • —

6._ es •
- 
7 —

55.00 —

40.6. • -

5.50 _ —•

—

I I I I I I I I

~ * ‘
i I ~ $ $ I

Fi g.3 . Same as Fig .1 but showing the catastrophe set of L
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of section in the E-B plane is shown with the catastrophe set of 1.1 for the ex-

ample of (4). The ti p of the swallow-tail is at B = 2/3, which defines the ca-

tastrophe set of V . These results seem not to depend sensitivel y on g, provided

that the choice of g is not trivial.

We believe that the system (I) - (3) prov i des a class of strange attractors

when the oscillation in J’~ engendered by (3) takes the system near the catas-

t rophe set of V. A gu i de to the behavior also seems to involve the superpotential

U. Examples in GFD are discussed in these proceed i ngs by Chi ldress and Ped l osky.

The potential V has m-2 parameters and we have made them all depend on A
We could add more free pa rameters and in addition to (3) we could introduce m-3

additiona l equations of this form . A variety of interesting examples may be con-

structed in this way.

Of course , one of the main interests in the present kind of study is the

possible clarification of turbulence that it may provide. To approach this pro-

blem systematically, we wish to extend the highl y truncated Fourier ana l ysis of

the fluid equations on which Lorenz ’s 1 and related i nvesti gations are based 8’~~.

We obtain equations like (1) - (3), with additiona l terms of a form not included

there , but also where )(. becomes a vector. For this reason , the i mportant gen-

eralizations correspond to similar equations with more degrees of freedom. Al-

ready with two degrees of freedom we can stud y in a g iven system an illustration

of KAM theory 1° when ~ = 0 and a strange attractor , when~~ * 0. How do the two

prob l ems come together? That is a problem we are try ing to understand at present.

Is the bearing on turbulence theory of this kind of study more direct than

these vague analogies suggest? To look into this , suppose that at t = 0, X~ = a.
Consider a swarm of system points with only one system point at each X at t = 0.

Let the initial veloc i ty field be such that orbits do not cross for a nonzero in-

terval of time . The orbit of any system is .x. X (t’.,&).
Now ± 4o.z/a&~;*~ D~/D-~

For some time , according to our assumptions , we can solve for O_ A (t,X ) and hence

may write v/t a)~~~~v (t ,A (
~~~~.X))~~~ u~(x ,t). Equations (1) - (3) become , with

3V (9)
~~~~~~~*~~~~~~~

-
~
- 

T
E,44

~~
1.

+ 
(10)

This is a sort of Burgers description of convection - not unlike one contemp lated 
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many years ago by D.W.Moore - and has many of the features of the usual Burgers j
descri ption . It generalizes readil y to two or more dimensions. In that case ,

it may pay to consider usin g some modern method s of diffraction theory~~ .

Let

~~~ 
-
~~~

-
~~~~

- ,  
~~~~

-
~~

--
~~~
— 1 1

Suppose also that
c~A~ ~~~~~~~~~~~ (12)

where CL&and ~~ are constants. Then we find

+ V :  _ C
~~~

- 
~~
‘ (13)

The equation is less edif y ing. But the quali tative impression is that

the complex nature of certain caustics 12 may have a famil y relation to the struc-

ture of strange attractors.
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MAGNETOCONVECT I ON
Ni gel 0. Weiss

Discrete ropes of flux seem to be characteristic of magnetic fie ld ~ in

the sun ’ s convection zone , and these flux ropes should be included in any de-

tailed dynamo model for the solar cycle. As a preliminary, we can stud y Bous-

senesq convection in the presence of an externall y i mposed magnetic field.

Numerical integration of the nonlinear equations makes it possible to explore

the dynamical interaction between magnetic flux ropes and convection .

For simplicity let us consider two-d i mensiona l convection with the ve-

locity and the magnetic field confined to the xz-plane and independent of y,

where the z-axis points upwards. We assume that the boundaries of the reg ion

o .czx<Ad ; ~~~ cJ~~are stress-free and that the total flux is equal to that

for a uniform vertical field B0. Then a particular configuration is character--

ized by the Reylei gh numbe r R , by the parameter Q ~~~d
2./
,.Lz,p )-‘ )i~ , by the Prandt l

numbers P1 = V/.x p2 = V/v-i and by the aspect ratio )~. (cf. Chandrasekhar 196 1 ,

Weiss 1977). Other useful parameters are p3 = and 
~/P3~ 

(which , like R ,

contains X and l.~ in the denominator). In all the computations P~ 
= I .

I except where stated otherwise.

If p3 ~ 
1 convection sets in as a direct instability, when

~~~~~~ ~~~~~~~~
where Rc = 8’i1~ is the critica l Ray lei gh number in the absence of a magnetic

field. For Q>> P3 >~~ 1 (the astrop hysically relevant case) convection first

appears as an overstab le mode when R~~R~
’>—’7i2.Q /p 3 and there is a transition

from oscillatory to direct modes at R~~~ 
Busse (1975) showed that

for p3 ~~~~ 1 and Q sufficientl y small , finite amp litude steady convection first

appeared when

+ ~ l.O (Q1p3 )

The nonlinear results for p3 ~ 1 show finite amp litude oscillations when

> T~~
°’. For 1 ~~ ~~ 100, steady convection appears at the Ray leig h num-

ber predicted by Busse. The field is concentrated into ropes with a Gaussian pro-

file and the horizonta l ve l ocity varies linearl y across these ropes. When

Q >‘> p3
1/2. the situation changes: motion is excluded from the flux ropes , which

are almost stagnant. The value of Rm in is close to R O) and i ndependent of p3
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~or p3 >> 1 . Within the rope the field is nearly uniform , with a narrow current

sheet separating the flux rope from the convective eddy.

R, i~t~ ~~.
(_~- )  -X CI)

Sketch showing the Nusselt number Nu as a function of R for Q>> P3~>> I.
The shaded reg ion shows the peak value of Nu for oscillatory convection .
The unstable steady solution branch from Rm in to R(e) is conjectural.

Calculations with R = l0~ and different values of Q show that stead y

convection in the dynamic regime is possible for p3R ~ Q ~~ p3~~
’2R U’3. The

transition from a dynamic to a kinematic (weak field) reg ime occurs when the

concentrated field is no longer strong enoug h to exclude the motion from the

flux rope (Galloway, Proctor and Weiss 1978). At hi gher Rayleig h numbers na r-

rower cells are preferred ; for R = l0~~, square cells broke up into cells with

)..= 1/2 . In the dynamic regime a second solution appears , with most of the flux

concentrated on one side of the convective cell. Symmetrical cells are appa-

rently unstable to perturbations which develop into these lopsided cells , though

the latter transport sli ghtly less heat.

The dynamica l i mportance of flux ropes is clear from these numerica l ex-

periments. There are also indications that a few large ropes may be preferred

to many small ones . Galloway and Moore (1978) have obta i ned simi l ar results for

axisymmetric cells , where flux concentration is much more potent. On the other

hand , nonlinear thermoha line convection (Huppert and Moore , 1977) apparently

shows no ana l ogue of the hi gh Q dynamical reg ime .
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HYDROMA GNET IC PLANETARY WAVES
Wi ll em V.R. Ma l kus

The secular variations of the earth’ s magnetic field appear to be wave-

like processes in an underly ing dynamo. Models of the geodynamo suggest that

there is a strong toroidal field (approx i mately 100 gauss). Here we discuss

severa l aspects of globa l hyd romagnetic oscillations in rotating systems both

stratified and unstratified .

In an early paper , Malk us (1967), an idealization was found in which all

the modes of a hydromagnet ic oscillation of a rotating spheroid could be deter-

mined. By good fortune , the choice of a uniform electric current to define

the basic magnetic field led to a modified Poincar~ eigenva lue problem. Due

to the work of Cartan (1922), Roberts and Stewartson (1963 a ,b ,c) and Greenspan

( 1 964 , 1965), many of the properties of the Poincar~
’ problem are understood .

Here several dispersion relations are established determining that in the hy-

dromagnetic case , modes of the system have phase velocities both East to West.

For small rotation rates the l owest non-axisymmetric modes are unstable -- for

rotation rates of geophysical interest all norma l modes are stable. It is

found that the zonal phase ve l ocities of fast magneto-h ydrodynamic and slow hy-

dromagnetic waves can be of either si gn. From the unstable norma l modes of

this prob l em , it was consluded that selective exc i tation of the observed west-

ward motion may be a consequence of shear or buoyancy instability. More recent

studies by Acheson (1972) confirm that most ~instab le modes of the large scale

slow hydromagnetic sort do move towa rds the West. However , an important class

of “she ll ular ” modes was found (Malkus (1967), Stewartson (1967) to move to the

East. The addition of stratification added a whole new class of interesting

problems including that of magnetic buoyancy. Recent studies by Parke r (1977)

and Acheson (1978) discuss the various instabilities of rotating magnetic sys-

tems which could lead to westward phase velocities. Perhaps the most interest-

ing of these has to do with the destabilizing effects of ohmic , therma l and

viscous diffusions. The criteria for these instabilities are derived and

Tabulated .

-- _ _ _ _
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MINI-SYMPOS IUM ON MAGNETOILYDRODYNAMICS AND DYNAMO Th EORY

Abs tracts of Seminars

MAt;N1:Ilc PROBING OF EA RT H ’S LIQUID CORE
Edward R.  Ben ton

Consideration is given to the following question: What can be

inferred , theoretica lly , about earth’ s li quid core using measurements of

only the geomagnetic field at earth’s surface: IVe discuss how , in princi p le ,

the following four quantities of interest can be obtained from a primitive

“first order” model of the earth.

(a) Depth or radius of the liquid core (a recent result of Hide)

(b) Depth at which substantial vertical motion and intense electric

current begin to flow

(c) Horizontal fluid motion adjacent to the core-mantle boundary

(d) Rate of increase with depth of the azimuthal field at the surface

of the core;

Consistent with the present state of geomagnetic observations relevant to

this probl~ m , we adopt only a simple model of the earth based on the follow-

ing physical assumptions :

(i) The mantle is a smooth spherical annulus without ellipti city or

topography.

• (ii) The mantle is either an insulator or at most a weak spherically

symmetric conductor .

(iii) On the decade time scale the core fluid moves like an inviscid

Boussinesq liquid of nearly uniform density and perfect con-

ductivity, stirred by radial gravitational forces (thermal ,

compositional , or phase-change in origin).

The data needed for practical application to this work (not presently

available in adequate form) consist of global measurements of the three-

component vector geomagnetic field of internal origin as seen at earth ’s

surface for two different epochs separated by a few decades in time . Alter-

native ly, use could be made of B and B (secular variation) at a single

epoch but this is regarded as more difficult , observationally, and is also

the harder to utilize.

It is essential for these purposes to devise schemes that fit the

-i 
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data not so as to best reproduce field values at specified locations , but

rather inversely to give most accurate locations at which the field takes

on prescribed values (i.e. contour curves of the field need to be accurately

located). The classic (former) problem is linear in the Gauss coefficients ,

the latter , hi ghly nonlinear , so interesting developments are to be expected .

The results obtained can also be used to provide new constraint ; on

secular variation models.
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MAGNETOHYDRODYNAMIC MODELS OF PLANETARY DYNAMOS

Friedrich hi. Busse

There are two reasons for the study of the magnetohydrodynamic dynamo

problem in order to understand the ori gin of planetary magnetism . First ,

kinematic dynamo models do not provide sufficient information to isolate a

particular dynamo mechanism. Widel y different velocity field can give rise

to the same observed magnetic field. Second l~- , the kinematic dynamo problem

does not determine the equilibrium amplitud e of the magnetic field which is

the most important parameter of physical interest . Moreover , the systematic

variation of the strength of the magneti c field of different planets provides

the most stringent test for any theory of planetary dynamos.

The analysis of the magnetohydrod ynamic dynamo prob l em is complicated

by numerous nonlinear effects that can occur , some of which are discussed on

th~ basis of dynamo models of Busse (1973, 1975).

(1) Lenz ’ rule: The normal effect of the nonlinear Lorent: force is

to alter the velocity field (mainl y by decreasing its amplitude)

such that the growth of the magnetic field is terminated and an

equilibrium amplitud e is achieved , at least in the time average

sense.

(2) The Lorentz force may enhance dynamo action and equilibrium

amplitudes for the magnetic field may be found for less than the

initial value of the magnetic Reynolds number (Busse, 1977).

(3) When the equilibrium solution is unstable , nonlinear oscillations

can occur . This situation occurs , for example , when the o(-effect

I
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decreases with increasing magnetic Reynolds number . This property

is caused by flux expulsion from the velocity eddies (Roberts

1972, Busse 1973) and is typical of dynamos with nearly steady

motion .

(4) The Lorentz force may release dynamic constraints , in particular

the constraints of the Coriolis force. It is this effect which is

the basic physical reason for the generation of magnetic fields

in rotating planetary cores . The opinions only differ on the

particular way in which this release is accomplished . Since there

are no dynamo models with strong Lorentz forces available , the

subject is speculative. One such speculation is that an upper

bound on the magnetic field provided by the condition for the

existence of the hydrodynamic branch of convective solutions in

the annulus model (Busse, 1975),

S - ~~S2 ~~~~~~~~~~~
~~~
— ~~~~~ ) c .~~

when 
~~~., is the field strength in the planetary core , ..~2 , r0 and

are rotation rate, radius and density of the core . 2. arid

x are magnetic and thermal diffusivities , and 
~~~~~~ 

is the magnetic

permeability . )~ is a geometric factor of the order 1/2 and a.

is the ty3ical wavenumber of the convection columns in the core

based on the radius r,, as length scale. Using a lower bound on c~.

of the order 10 suggested as a condition for dynamo action by the

numerical experiments of Bullard and Gubbins (1977) the upper

bound (#) appears to give remarkably good fit to the observed

amp litudes of planetary magnetic fields (Busse, 1976).
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A PRELIMINARY REPORT ON PROGRESS IN MODELING TI lE SOLAR DYNAN O

Peter A. Gilinan

For the past several years , we have been develop ing a numerical model

for a full MMD dynamo in a rotating spherical shell. The motions responsible

for the induction are convective flows , driven by uniform heating at the

bottom of the shell , together with the differential rotation these motions

drive . The motivation for the model is the solar dynamo , although the model

physics is still considerably simpler than the solar case.

Our strategy has been first to develop a model for convection and

differential rotation , which produces surface differential rotation much

like that of the sun , even in quantitative terms . We then study the dynamo

properties of this “best” solution . The full j x B feed-backs of the induc ed

field on the flow are included .

Briefly, the model physics is as follows :

1. Boussinesq fluid

2. Linear diffusion of temperature , momentum , and magnetic field
23. Central gravity (h r )

4. Stress free top and bottom , constant heat flux bottom , constant

temperature top

5. Perfect electrical conductor bottom , radial magnetic field or

perfect conductor top (no potential field)

6. Shell depth arbitrary

The solution technique is:

1. All dependent variables are expanded in fourier series in

longitude

2.  Resulting amplitude functions are solved for on art energy con-

serving , staggered grid in the meridian plane .

3. Leap-frog time differencing is used

4. Pressure is found by solving Poisson type equation from

divergence.
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5. Two components of the induction equation are solved , plus

V = 0, with the third used as a check.

6. The calculation is currently started from random numbers in the

temperature field , and in the seed toroidal field.

So far , a small number of limited experiments have been performed , with 13

points in the radial direction , 61 Points from pole to pole , and between 2
and 11 wave numbers in longitude (always including wave number 0 for the

axisymmetric flow and field). No symmetries about the equator are assumed ,

because we wish to look for any tendency for symmetry selection .

We have most extensively studied the case with Ray lei gh number

= 8 x lO
g
, Taylor number = 2 x lOs, Prandtl number P = 1 with shell depth

1/3 of the outer radius . For this case we get the following preliminary

results .

1. Dynamo action is sustaintd for magnetic Prandtl number

~M
= n1/K~~ 

0.25 for 2 modes , fl-~ 
.
~~~ 0.2 for 11 modes , so convergence

seems good . These ?,.~ ‘s correspond to internal magnetic Reynolds

numbers in the range 150-200.

2. The feed-backs on the motion are quite large if 
~~~~ 

much below

the critical value . For example , differential rotation energy can

be reduced by a factor of two , before statistical equilibrium is

reached , compared to the same case without magnetic fields.

Approximate equipartition between the field and flow is rather

easily achieved .

3. We do get field reversals , whose period is not sharp ly regular .

The typical period is shorter than for the sun by a factor of

20-30, for surface differential rotation of the same size as the

sun has . Migration of torodial fields both toward the poles and

equator is seen, so the “butterfly diagram” for the model would be

more complex than on the sun .

4. No clear symmetry selection mechanism has been found so far. That

is , symmetric (quadripolar) and antisymmetric (dipolar) magnetic

fields have roughly equal amp litudes , on the average . This is

despite the fact that the motion fields turn out to be strong ly

biased towards symmetry about the equator (meaning east-west and

radial motions are symmetric ). It is possible that the model has
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to be run longer (at least from random numbers) to establish this

property.

5. For this case , the dynamo appears to be more “o~~ 
“ like , rather

than “ o( - ~~~
“ like , in that the maintenance of the axisymmetric

toroidal field is due primarily to induction by the nonaxisym-

metric convection , rather than due to shearing of the axisyinmetric

poloidal field by differential rotation .

Both the short period of the model compared to the sun , and the

dominance of convection rather than differential rotation in maintaining the

toroidal field , may be explained by the fact that the helicity of the con-

vection is two or three orders of magnitude larger than has been previously

assumed in simpler dynamo models in order to get the right solar period . In

other words , convection sufficiently influenced by rotation in the model to

drive the right differential rotation for the sun has much more helicity

than apparently is felt by the solar magnetic field. Reducing the rotational

influence (reduced Taylor number, or increases Rayleigh number) to get the

right magnitude helicity does not work , because the equatorial acceleration

is lost. We doubt that the addition of compressibility to the model will

help, because it would have to destroy most of the helicity of the convec-

tion, while still retaining its Reynolds stresses to maintain the right

differential rotation .

Ins tead , we suspect that the ability of the solar magnetic fields to
concentrate into tight flux tubes , around which the plasma may f l ow , is

crucial . The model shows some tendency to do this . That is , we find a

greater fraction of magnetic energy is in the high wave numbers than for the

kinetic energy and the toroidal field is more highly structured than the

differential rotation . Unfortunately, the cost of computing with much

higher resolution makes it very difficult to represent the concentration

mechanism very well. On the sun, perhaps the concentration of the field

into small flux tubes we see at the surface extends throughout the convection

zone, with convective flows , and differential rotation , slipp ing around the

tubes . This should reduce the net hehicity felt. The period of reversal

then may be a nonlinear function of the fraction of the total volume

occupied by flux tubes . The magnitude of the reaction of the field upon the

global flow should also be reduced for flux tubes occupying a small fraction

of the volume .
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If these concentration effects are fundamental to the solar case then

a serious problem for the future is how to represent such a small scale pro-

cess accurately in global dynamo models in which the hydrodynamics is

explicitly calculated .

In the light of our results , albeit preliminary, recent “success” by

Yoshimura in modeling the solar cycle and its envelope using effects of

global convection and differential rotation , is probably the result of

fortuitously compensating over-simplifications of the hydrodynamics , induc-

tion , and nonlinear feed-backs , which have resulted in enough free parameters ,

when allowed to take mutually inconsistent values , to “model” almost any

nonlinear system .

TURBULENT DIFFUSION OF MAGNETIC FIELDS

Edgar Knobloch

In studying the turbulent diffusion of magnetic fields , we are
interested in calculating the statistical properties of the magnetic field

13 ( x , t ) in terms of the statistical properties of the turbulent

velocity field u ( ~ , t ). in general this problem leads naturally to non-

linear coupled stochastic differential equations . Here we shall restrict

ourselves to the discussion of the diffusion of passive magnetic fields by a
prescribed (in a statistical sense) incompressible turbulent velocity field

in the high magnetic Reynolds number regime appropriate to the sun. In this

case the problem reduces to the study of the stochastic induction equation ,

which may be written in the general form

(1)

where L ( x. , t ) is a stochastic operator, independent of f . This equation

can be solved for the ensemble average of f , ~ or , by eliminating ~

the f luc tuating part of f , from the equation (Knobloch , 1977). If we assume

that at time t = 0, f (O) = 0, or that it is uncorrelated subsequently with

the velocity field , the exact solution can be written as the integro-

differential equation

[~ 
÷EJ~ S~

t’< ~ (t) (t , tj (j  ~A) L’ (t~)}u0(t,~t
’) L’(t))~~(t), (2)

I 
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where L E <  L?, L’~ L-C , U0 is the Green ’s operator for the equation

~i~4t1~
and A is a projection operator that takes an ensemble average of everything

following it. The subscript 0 on the exponential indicates a time-ordered

exponential. In what follows we shall restrict ourselves to homogeneous

turbulence , and shall therefore assume that ~~~~A -> = 0. In the high Reynolds

number limit the diffusion term in the induction equation may be omitted , so

that now I- = 0 and 1 =  1. In this case equation (2) may be cast into a

differential equation for ~f ,

~~ 
~~rnj ~~~~, 

(3)at
where the operators /‘~~ involve rfl - integrations over the cumulants of L
For this reason , the result (3) is an expansion in powers of the auto-

correlation time of the stochastic operator L’ (Van Kampen 1974, Terwiel
1974). The incorrectly time-ordered terms in the cumulants correct for the

memory effects lost in pulling f ( t ’ ) from under the integral signs in
equation (2).

The simplest approximation arises when the autocorrelation time L
~ 

of

the turbulent velocity field is short. Then the first term on the right

side of (3) dominates , and the approximate equation may be written as

(4)

The resul ting equ ation for becom es f or isotropic helical turbulence

~~ 
(~~~t) r7~ V .~c ~ (x , t) ÷ v~~ 

(~ ,t ) (5)

where ~
~~~-.-!~ 

~~~~ 
t).c~~ ~ :~~~~~~ t~~.(.~t-fl~dt (6)

Here the subscript denotes the coefficient of V , and the superscript the

number of velocities entering in the definition . Equation (5) in the usual

dynamo equation; the first term on the right side represents the c(-effect,

respons ibl e f or f ield amp lification by helical turbulence. It represents

the statistical effect of the term 13 V ‘~~~~ in the induction equation . The

coefficient is the turbulent diffusivity 13 and is positive in this

approximation .

For longer autocorrelation times the result (4) gives rise to the

_
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expression

(7)

The inclusion of each higher term in the cumulant expansion has two distinct

effects. First , a term with a higher derivative of 13 is introduced ; such

terms are neg ligible when the mean magnetic field is large-scale. Second ,

each cumulant adds a contribution to each of the preceding transport

coefficients. As a result the transport coefficients may be said to be

renormalized by the higher order terms :

.. . 
‘~~~ ,

~ ,
d= ~~~~~~ . .. . (8)

Each transport coefficient is an infinite series in powers of R
where -? is of order 7~ , the Taylor microscale (Knobloch , 1978). In sta-

tionary turbulence , R~~ L
~~,~~ _)(~~~L ’ j )R ~~~~~ , where L- is the eddy

correlation length (“typical” eddy size) , and the eddy correlation time is

approximately L/~ for realistic turbulence. Here ~Z is the r.m.s. tur-

bulent velocity and is the turbulent Reynolds number . For fully

developed turbulence the transport coefficients therefore formally diverge ,

but their value could be estimated using, for examp le , Pad~ approximants.

The condition that the dynamo equation be valid (i.e. that the higher deri-

vative terms are negligible) is k.± cit /c ... ~ 1 when ~ is the wavenumber

of ~ . This condition is equivalent to < L~~

The above Eulerian results can be shown to be formally identical with

the Lagrangian results of Moffatt (1974) . The divergence of the expressions

(8) is related to the use of a Taylor expansion when converting Lagrangian

variables to Eulerian ones .

Because of the presence of the term in equation (7), the

diffusion of the magnetic field will differ from that of a scalar field . To

lower order in t~ the diffusion of a scalar and magnetic field by non-

hel ical turbulence is the same . Howev er , for realistic turbulence these

higher order terms may not be neglected , and since both and (related

to mean square shear and helicity , respectively) provide negative contribu-

tions to the sum , the possibility arises that the turbulent diffusivity of

the mean magnetic field could be negative (Kraichnan, 1976). This may be

related to the steepening of gradients (and the expulsion of flux in the

presence of small molecular resistivity) by eddies with long correlation
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times (Weiss , 1966). On the other hand , for small edd y would have no

time to affect such an expulsion and when it was rep 1~ ced by an uncorrelated

one , any such tendency would be on average reversed . Such a situation would - 
-

correspond to a positive eddy diffusivity, as in equation (6).

For a more complete statistical description of the diffusing magnetic

field , the above method may be adapted to calculating higher moments of the

field. For example, the mean magnetic energy < ~ > is an important quantit Y ,

particula rly if~~ is indeed negative.
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NEGATIVE DIFFUSIVITY

Robert H. Kraichnan

In this talk the origin of the negative diffusivity which turbulence

in a conducting fluid can exert on weak magnetic fields when ther are sub-

stantial fluctuations of helicity about a zero mean is reviewed , and some

speculations are given about the persistence of this phenomenon into the

strong-magnetic field regime .

Turbulence exerts a positive diffusivity on a passive scalar field

advected by the motion in consequence of the random walk executed by fluid

elements. More complicated and intuitively surprising things happen when a

magnetic field is frozen in a moving, conducting fluid because the magnetic

field is changed in direction and intensified by stretching as well as dis-

p laced .

Following Moffatt , the time derivative of the scalar or magnetic

field , after averaging over ensemble , can be expressed as an infinite expan-

sion involving ascending space derivatives of the field and ascending 
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cumulants of the distribution of fluid -elem ent disp lacements. This follows

formally from Cauchy ’s integral solution of the advection equations and

suitable spatial Taylor expansions . For times of ~--ol ution such that a

typical fluid element mi grates a distar.ce which is small compared to the

scale of spatial variation of the mean scalar or magnetic field , the expan-

sions are dominated by terms containing only first and second space

derivatives of the mean field.

In the scalar case , these leading terms give

~<~‘~ x ,t ) >/ ôt ~~J< (t ) V
L
<~~~ (X ~~t)> 0> I~ ~~~~~ d (1)

where (~~(x t)> is the mean scalar field , ~~ is the disp lacement of the

flui J element which arrives at x , , and for simplicity in writing we take

isotropic turbulence . The displacement is measured from time t 0 , when

the turbulence is switched on. In the magnetic case

(2)
at

where a ~ow): (~ )/dt, ~ (t~): <g ~ ~ i~_ >
~

(
~ ‘~~k t ?÷ f ~~~ ((

~~~~%. 

~~~~~+[~~~~]~j~
and a, is the initial position of the fluid element which arrives at x , t

If the turbulence is statisticall y stationary , k (t ) is a positive
constant for times long compared to the turbulence correlation time . o~(t)

is zero if there is no helicity and approaches a constant (either sign) if

there is a constant mean helicity everywhere . In the latter case , the final

term {
~y (t)~

t 
in (3) grows like . But an alternative , Eulerian calcula-

tion of P’L (t.), accurate for short enough turbulence correlation time , shows

that ilL (~ ) also approaches a constant , positive value for helical turbu-

lence with simple statistics. It follows that , for helical turbulence ,

~~~~~~~~~~~~~ ~ /c’o-2>
becomes negative and grows like _~tt for t large compared to the correlation

time . This final fact is the origin of the negative diffusivity for

turbulence with zero mean helicity .

Suppose now that the turbulence has zero mean helicity but that there

are fluctuations of helicity such that the helicity keeps the same si gn over

regions which are several correlation lengths of the turbulence in extent

and several correlation times in duration . Since the mean helicity is zero ,
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~ (t, vanishes . But for times short enough that a typ ical fluid parti cle

does not mi grate out of the region of helicity fluctuation in which it

starts , the 
/~~~ ~‘

term in (3) is nearl y unaltered in value from what it would be if the

helicity were uniforml y nonzero . Since that term goes negative regardless

of the si gn of helicity , so does ~7
_ 
~ ) . Clearl y we can mal - - - as

negative as desired by making the helicity fluctuations suffici ent1~- exten-

sive and persistent. 7
Al l  the properties inferred above have been verified by computer

simulations , and by analytical model cases (Kraichnan , Parker).

If the magnetic field is strong , how do Lorentz forces affect the

phenomenon of negative diffusivity? In the extreme strong-field case , the

turbulence is replaced by random Alfven waves propagating on the lines of

force . Preliminary analysis suggests that the negative diffusivity pheno-

menon persists , with the typical Alfven period playing the role of effective

turbulence correlation time .

References . 1

~.lI . Kraichnan , 1976 J.F lu id Mech. 77; 753 .

U .K . Moffatt , 1976 in Advances in Mechanics 16: 119.

L.  i~arker , to be published .

A NEW THEORY OF THE SOLAR CYCLE*

David Layzer

Following Cowling, nearly all modern workers attribute the cyclical

variation of sunspot fields to the quasi-periodic reversal of a submerged

toroidal field , from which the surface fields are assumed to derive through

some kind of hydromagnetic instability . It is also generally agreed that

the toroidal field is generated by differential rotation acting on the

poloidal component of a weak large-scale field. The real difficulty lies in

understanding the orig in of the weak poloidal field and the mechanism for

reversal of the toroidal field derived from it. In regenerative-d ynamo

theories the poloidal field is derived from the toroidal field itself through

processes in which helical turbulence (or convection) and turbulent diffusion j

L -_ .
~~~~~~~~~~~ - - -
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p lay crucial roles . The regenerated polo idal field changes sign every half-

cycle. In  the alternative theory sketched in  IV , V . the nonconvective

core of the Sun con ta ins  an irregular large-scale magnetic field. The

toroidal field is generated by to r s i o n a l  oscillations in a transition layer

between the uniforml y rotating, nonconvective , magnetized core and the non-

uniforml y rotating, nonmagneti:ed convective envelope . The submerged field

is the remnant of a much stronger , irregular field that was generated during

the pre-main-sequertce phase of solar evolution and mediated the process of

Sj ) i n down

In comparing the two hypotheses we may convenientl y distinguish three

sorts of questions : those relating to internal consistency and the validity

of specific mathematical or physical assumptions; those concerning the

ability of each hypothesis to provide an adequate framework for interpreting

observations of solar magnetic fields; and those concerning the relation of

each hypothesis to the broader problem of the origin of stellar and inter-

stellar magnetic fields .

Internal consistency . The theoretical cornerstone of regenerative

dynamo theory is the dynamo equation (3.4). Al though this equation is valid

for flows with low Reynolds number , we have seen ( ~~ II I b ) that the

-. approximations on which it rests are not valid under conditions prevailing

in the solar atmosphere. Under these conditions the coefficients and

are given either by formall y divergent expansions (Knobloch 1978b) or by

oscillatory integrals whose convergence in the limit t-~ oo is prob lematical

(Moffatt 1974). There is no known theoretical or experimental basis b r  the

assumption (Parker 1971) that the turbulent diffusivity of a passive

magnetic field has a well-defirted value comparable to -- or even with the

same sign as -- the turbulent diffusivity of a passive scalar field (EIII~ ).

Finally, we have argued (€ III c1 ) that turbulent-d ynamo theories do not

correctly describe the way in which differential rotation and turbulent

motions jointl y act on the magnetic field. Mathematical models of -~~~ “-
‘

dynamos unjustifiab ly omit terms that describe the interaction between

differential rotation and the fluctuating component of the m agnetic field.

The alternative hypothesis ( -
~~ 

§ IV ,V) does not invoke rapid merging

of small-scale magnetic fields . It does postulate (~~
) that certain kinds

of large-scale flows occur during a critical period of solar evolution , (1~)

_ _ _ _ _ _
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that a remnant of the strong , irregular , large-scale , magnetic field

generated by these motions would have persisted to the present day , and ( C..)
that a nonuniformly rotating, magnetized layer separates the uniformly

rotating, convective envelope . These postulates seem to be consistent with

present physical and astronomical knowled ge but need to be made more precise

and secure by detailed studies .

Interpretation of observed solar magnetic fields. The dynamo theory

evolved during a period when observational evidence seemed to indicate that

the Sun has a weak poloidal field that reverses quasi-periodically .  At
present there is no direc t observational ovidence for the existence of such

a physical field. Leighton (1964) has argued that an average poloidal field

results from the breakup of sunspot fields and random horizontal motions of

their components . But there are no known theoretical or observationa l

reasons (apart from the requirements of the dynamo theory) for asserting

that the residual sunspot fields merge to form a large-scale field , rather

than remaining fragmented throughout their decay (Stenflo 1976). Finally,

the absence or near absence of sunspots during extended periods (Eddy 1976)

presents a serious and as yet unmet challenge to turbulent-d ynamo theories.

The normal modes of a regenerative dynamo are exponential . While it is easy I

to understand how the amplitude of an exponentially growing mode can be

limited by nonlinear effects, there is no obvious reason why an exponentially

decaying mode should not disappear altogether. Leighton ’s (1969) numerical

simulations suggest that this is indeed what happens to such a mode .

The alternative theory relates the variability of the solar cycle to

the variable rate at which magnetic flux in the radiative core penetrates

the convective envelope . The observed correlation between the rise-time of

the sunspot number and the total sunspot number in a given half-cycle is

explained by the fact both quantities increase monotonically with the thick-

ness I~ i of the transition layer .

Solar and stellar magnetic fields. The dynamo theory does not

explain the origin of a large-scale solar magnetic field; it postulates that

a large-scale field was present in the material from which the Sun formed .

The only  known process for the spontaneous generation of large-scale magnetic
fields under astronomically relevant physical conditions is Biermann ’s

mechanism , which operates in any differentiall y rotating , partiall y ionized
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gas-cloud . Thus large-scale magnetic fields may be expected to develop

spontaneously in gaseous protostars as well as in larger self-gravitating

gas-clouds which spin up as they contract . Soon after the Biermann field

has begun to grow in a contracting gas-cloud , it will be amplified by fluid

motions ( 5 IV) . The resulting complex fields mediate the transfer and loss

of angular momentum , enabling pr tostars to contract to stellar dimensions .

The subsequent evolution of the magnetic field depends on the extent

and disposition of convective regions in the star . In stars with convective

envelopes , the convection zone tends to exclude the submerged field , but

also interacts with it in a more or less narrow transition layer . We suggest ,

as a working hypothesis , that this coupling between the submerged magnetic

field and the overlying convective envelope has two observable effects :

(1) It mediates the outward transfer (and eventual loss) of angular momen-

tum. (2) It gives rise to torsional oscillations of the transition layer

which produce strong toroidal fields .

In stars whose outer convection zone is weak or absent the submerged

field will penetrate the visible layers . We suggest that the fields of

magnetic A stars may be interpreted in this way . A complete theory along

these lines would , of course , need to explain other conspicuous properties

of the magnetic A stars -- in particular , their slow rotation . These and

rela ted questions lie outside the scope of the present discussion . The

existence of stars with large-scale but distinctly irregular magnetic fields

does however bear directly on the present theory , which predicts that such

a field is present in the Sun ’s nonconvective core .

*From a paper submitted to the Astrophysical Journal. References in
the text are to this paper .

SPECULATIONS ON THE THERMA L STATE OF THE CORE
David E. Loper

It is argued that the most plausible source of power for the geodynamo
is grav itational energy re leased by the grow th of the s ol id inner core.
Resu l ts of model calc u la tions by Loper (1978a) show that the power available
to drive the dynamo by this mechanism is linearly related to the density

12, .
jump at the inner-outer core boundary and can be as large as 1.25 x 10 ~ if

3 3 . . . 3L~lp = 2.63 x 10 kg/rn . This can sustain a toroidal field as large as 10 .,

_ _ _ _ _ _  -~~~~_ - --~~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _  _
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gauss.

The thermal regimes of the outer core which are possible if the

dynamo is gravitationally powered are studied . The regimes are defined by

the ordering of the magnitudes of the gradients of the adiabat TAI , the

liquidus 1 L and the conduction temperature . It is argued that regimes
,~~ I ~~~ .—

~ 
P / > 

I

- ~ ‘A ~ 
I~ and / L Ic,. ‘~ are not possible sinc e they result in

a solid outer core . The regime for which T’,~
’ 
~ T~ I L,

’ is the simp lest

and possesses no unusual features . The second regime with 1A ‘-

is similar to the first except that a s1 mrry layer must occur at the bottom

of the outer core. The thermodynamics of such a slurry have been studied by

Loper and Roberts (1978). In each of these regimes the fluid is both ther-

mally and compositionally unstable. This is in contrast to the third regime ,

T~ 
‘F,I~ ‘~

‘
~~~ 

, in which thermal gradients tend to stabilize the fluid .

However , it assumed that overturning is driven by the stronger compositional

buoyancy. This introduces the possibility that heat may be transported

radially inward by the convection driven by compositional buoyancy.

Consequently there is no direct relation between the rate that heat is con-

ducted outward in the outer mantle and the rate of heat transfer to the
~ /mantle. The fourth regime , I~ ‘.. - , allows compositionally driven

convection provided the thermal conductivity is sufficiently large that
—I ‘ ~~~~ •‘ •1•’ I -.-i—~ 1 p-i—, I

6 I 6 

~ 
where i is the actual temperature gradient .

This possibility appears to have been overlooked by Higgins and Kennedy

(1971). It is argued that a slurry in the bulk of the outer core as

env isaged by Busse (1972) and Malkus (1973) is incompatible with overturning
because transport processes produce both thermal and compositional gradients

which tend to stabilize the fluid.

The possibility that the core fluid may be less metallic than the

eutectic as Braginsky (1963) suggested is considered and it is shown that a

layer of variable composition must form at the bottom of the outer core.

Difficulties associated with the removal of heat from this layer l eads to

the conclusion that a metal-poor composition for the core is unlikely. The

thermal evolution of the earth is discussed and it is noted that if

the heat transfer problems for the core and mantle are decoupled with con-

ditions in the core leading to a prescribed temperature at the base of the

mantle and the mantle in turn prescribing the heat flux which must emanate
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from the core. It is found that if T
A

’ 

~ Ti,’ , a significant flux of heat

may flow from the core to the mantle with virtuall y no change in temperature .

For detailed discussions of these ideas see Loper (1978b) .
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E LECTROHYDRODYN AM I CS AND MAGNETO II YDR ODYNA M IC S
James R. Melcher

Beginning with a brief review of the contrasts between electroquasi-

static and magnetoquasistatic approximations , and between the electric and

magnetic force densities , a pair of case studies are developed that illustrate

analogies be tween phenomena in the two areas . Von Quincke ’s rotor cons ists

of an insulating cylindrical rotor having radius b and perinittivity &~
immersed in a liquid having permittivity ~~ and ohmic conductivity 

d~
Plane electrodes on either side of the rotor in the liquid impose an electric

f ield E 
~ ~ 

) that is uniform far from the cylinder and directed perpendicular
to the axis of rotation. The equations of motion , which are useful in under-

standing convection in many electrohydrodynainics systems , hav e a form wh ich

in the limit 4
~~
(
~b — ~4)~(E~~-~ Ea.) — ‘0 are the same as for a-b-c convection .

pe
-Ii:

~-~~~~~ ~ F p ~

H~~4i

— - -- -- - - ‘

~

- ---_ -“ -
~~~~~~~~~ -~~ - •----~~~~~ “ ~~~~~~ -~~- - ~—- - - .- _—

~~~~~-~~~~~
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Here , .fl is the rotor angular velocity and ~~ and P7 are proportional to the
polarizations per unit length in the X and directions . Variables are

normalized so that
t. ~..t; (&~+ 

~~~ ,

~i ( t ) ~ E (t)/E’

Analogous to the Rayleigh number is the square of the electric Hartmann

number , He (the square root of the ratio of the charge relaxation time to

an electroviscous time) while the role of the Prandtl number is played by

(the ratio of the charge relaxation time to a viscous diffusion time).

~ ; ~~~~
=

Here, 1 and 13 are respectively the rotor moment of inertia per unit length
and viscous damping coefficient per unit length . If 1 is the rotor inertia
alone. I 

~ W” p/2. while (for complete viscous diffusion in a liquid

extending to infinity),J~~ ~ V’ b2 r~ where ~ and p are viscosity and mass

density respectively. Thus, Ce/t’c~, ; ~~~~ ~~~~~~~~~~~~ pe~
re/ry ;

t,
v pb~,

/8~7 .
There are familiar magnetohydrodynamic phenomena having features in

common with this rotor model . A limiting form of one of these is discussed

to motivate a continuum model for instabilities observed in liquid metals as

they are shaped or levitated by high frequency alternating magnetic fields .

The rotor model consists of a conducting shell with an imposed high frequency

magnetic field that is uniform far from the cylinder . Incipience of

instability is governed by a parameter M B t ~c~ ( B~ and u~ the peak mag-

netic flux density of the applied field and its angular frequency respec-

tively) which is the reciprocal of the magnetoviscous time-frequency product.

It is found from a continuum theory based on m agnetic stresses averaged on

the time scale ?
~~~~ 

that a pl anar l iquid layer supporting a uniform skin

current and peak surface magnetic pressure 13~/,t.4~ , is unstable for tV~\)],7
Thermal convection terms are added to the rotor model to motivate explana-

tions of why the predicted incipience of instability correlates with

experiments , but the growth rate predicted by the theory is far longer than 

- - - - -~~~~ 
~~• . •• - ~~. - - - ~~~~ - 
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that observed .

A natural electrohydrodynamic dynamo is the thunderstorm . The film

“Electric Fields and Moving Media” is used to show electrohydrodynamic
dynamos involving falling water drops . These are the “Kelvin Dripper ” and

the Euerle 3-phase dynamo .

THE OXYMORONIC ROLE OF MOLECULAR DIFFU SIVITY IN THE DY NAMO PROCESS
H. Keith Moffatt

The delicate question concerning the behavior of the regeneration

coefficient~~ and the turbulent diffusivity ,3 in the limit of vanishing

molecular diffusivity 
~ Z — ~

o ) in helical turbulence is discussed , in the

light of an exact result of Bondi ~ Gold (1950) viz, that when ~7~~
0the

external dipole moment of a current distribution in a sphere is permanently

bounded .

1. The oxymoron is a figure of speech which embodies an apparent con--

tradiction; e.g. Creative destruction , relaxed tension , devastating

triviality, etc . The oxymoronic role of molecular diffusivity ~ (~~~~cr))

is this : that while non-zero diffusivity ( 
~7 
)O ) is directl y responsible

for the natural ohmic processes of dissipation and decay , it is also

indirectly responsible for the means of regeneration of the magnetic field;

the dynamo process may be described as a process of ‘regenerative decay ’ or

perhaps better ‘reinvigorating dissipation ’.

2. Consider the dipole moment ,44(±) associated with a current distribu-

tion 3 (x.t) ~~~~~~~~ in a conducting sphere V r ~~~~. This is

given by various alternative expressions :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(1)

where S is the surface r~ ~ ; and its rate of change is given by

L ~~~~~~~~~~~~~~~~~~~ 
(2)

With 
~~~ 

— 
~~~. + v,~, , and ti- . n ~. 0 ~~ 5 , this gives

(3)

The first term on the right describes the mechanism identified by Bondi ~
Gold (1950) for increase of the dipole moment ; field sweeping towards the

magnetic poles (defined by the instantaneous direction of the vector )

______________-

~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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can increase t4J , but , as emp hasised by Bond i 4 Gold , this mechanism is

strictl y limited when ~ ~~
‘ 

, since then attains a finite maximum

when all the flux of L~ is concentrated at opposite ends of a diameter of

the sphere (as in an elementary bar magnet). To see this explicitly from

the above equations , let S~. denote those parts of S on which Y) ~ or

respectivel y, and let

~ ± f r 5~ ~~
(~~.8)dS (4)

so that 
~~~~ ~~~~~~~~~ . We then have

‘~k j
2

~~- C 4  ~~~) (5)

where

~~~I~~ S 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(6) .]

Now , when , ~ is constant , since flux through every closed material

circuit is conserved , and so

(7) 
- -

the maximum being attained only when the flux is entirely concentrated at

the poles , as mentioned above .

3. There can therefore be no doubt that , when 0 , exponential

increase of the dipole moment is impossible , no matter what the comp lexity

(laminar or turbulent) of the velocity field in V may be. The situation is

transformed if ~ > 0 , because then diffusive increase in the dipole moment

(represented by the second term of (3) is possible , provided the velocity

field is such as to maintain a field with a suitably negative gradient near

the boundary Y~ c~. . j
4. The impossibility of sustained dynamo action (in the sense of an

exponentially increasing external dipole moment) applies equally to such

basic systems as the homopolar disc dynamo . If the disc conductivity is

infinite , then the magnetic flux across it cannot change with time , and

exponential growth of the magnetic field associated with the device is

impossible no matter how fast we rotate the disc or how ingeniously we twist

the wire , and whatever conventional wisdom may tell us to the contrary . In

terms of growth rate, if, in general , 13 t~ç , then must depend on the

disc Reynolds number in the manner indicated in Fig. 1. It is reasonable

to conjecture that fluid dynamos also must behave in this manner .

ii
] 

~~~~~~~~~~~~~~~ - - -~~~~—~~~~~~~~~~~~~~~
—-- -

~~~~~~~
- -- -
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P 1

_ _ _ _ _ _ _ _ _ _
-

Fig. 1. Possible dependence of \,~ on i~m for homopolar disc dynamo .

(a) wire resistance zero; (b) wire resistance non-zero .

In either case,p— .O as R~~—). ~~~~~~~~.

5. Consider now the situation in mean-field electrodynamics , in which ,

in convectional notation ,

(u.- ,~ 6’) . : 0I~J 
+ c’~ . . . (8)

where L30 (x t) < ~ . -L ) > is the large-scale (mean) field , and

B — . Under first-order smoothing theory (Moffatt 1978 -

hereafter referred to as M - chap . 7) we have the results

* ~~ 
- + ‘-i. ft d k d w, (9)

+ ~j k ~ ~L 5J 
~~~~~~~~$ 

d k d (A) , (10)

-- whe re F (I’c , .u) , ~ (~c ,cii) are the helicity and energy spectrum functions

of the random u.-field. If

~~~~ . ~~‘-~‘O , (11)

then clearl y
O<~~~~~ 

-
~~~~~ 

P~~ ~~~~~~~ QA ~~—*O~ (12)

where a<~~ and,~~ are in general non-zero constants 
~~
. 0) . This is

clearly the situation when the ~~ . -field is a field of random waves with no

zero-frequency ingredients. In this case, the regenerative process normall y

associated with the pseudo-scalar o~ vanishes as —‘ O , consistent with

the remarks of ~~l. It may be noted that the theory of Braginskii

(H. chap . 8) gives an expression for the regenerative coefficient very

similar to (9), and again with the property D( as 17 —.0.

6. Difficulties arise however if the u -field has non-zero spectral

density at c.~ : 0 , as is -&he case for conventional turbulence . The zero- 

~~~~~-— ~~~~~~-- — - -  - .~~~~~~~~~~ -- - — - -  - . - - ~~~~—~~~~~~~~~~~~~~~~~ 
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frequency ingredients of the turbulence are precisely those that are

responsible for the dispersion of particles in a turbulent flow , and they

are of vital importance also in the field-line - stretching context . It

must be noted however that results such as ( ~~> — ~. D -t for the relative

dispersion of two particles separated by vector distance t (t)is ultimately

limited by the physical dimensions of the fluid domain; and care may then be
needed in carrying over asymptotic results from strictly homogeneous

turbulence to turbulence in a finite domain , particularly when these results

are sensitive to the limiting C t— 00) behavior.

7. When 0 , there is an alternative approach to the determination

of the coefficient O~ and ~ 
using Lagrangian averages . If at some instant

0 , the ~ and ~ fields are uncorrelated , then o( and /3 are
functions of t (which clearly vanish at t: 0 ). The Lagrangian proc~dure

(M. ~ 7.10) leads to the expressions

~~( - < ~~~~~~~~~v-( t) dV , (13)

~~y(t). ~~~~~~~~T+ 5 0 <  (t~~~ (Z
)d.D’,

+ J < ~ (t) . -~’(r ~
) c 70. . r ( t ) _ ( ~ (t) .~~~ (r ~) fl ((c1) ?. .2

~ 
(14)

where ~~ ~
t) is the velocity of the fluid particle initially at position ~~~. .

The dif f icul ty here is to determine how these expressions behave for a

typical field of homogeneous turbulence as —~~ ~~o - Kraichnan (1976 a, b)

has argued that, in the case of turbulence with non-zero helicity,

~~~ (~~~~) 
..—.. oc ~~ ,C (t) . ,d. ~~ _3 (15)

the apparent positive divergence in the second term of (14) being cancelled

by an equal negative divergence in the third term (which involves the awk-

ward triple Lagrangian correlations). Kraichnan ’s arguments rest in part on

comparison with the results of first-order smoothing theory in situations

where both approaches (first-order smoothing and Lagrangian) may be expected

to be valid , and in part on numerical evaluation of (fr)and ,~~(t-}for

veloc ity fields with prescribed Eulerian statistics. Further numerical

experimentation is needed however, before the results (15) can be regarded

as absolutely and definitively established . Let us nevertheless accept (15),

and pursue the consequences in the context of o~~~. and~~~c&.-dynamo models.

.1 
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8. For an oC -dynanmo in a sphere ‘r~~- 0... (H. chap . 9), the growth rates

have the form

o~ r / r ‘
~— r~~rc~() (16)

wh ere = ~+,3 ,and

( 17)
and dynamo action occurs when F(R e~)>O . This generally occurs for the

simplest mode of dipole symmetry when

R,g >R ~~c a  (18)

where 
~~~~~~ 

a positive number of order unity which depends on the precise

assumption made about any large-scale variation of o< throughout the sphere.

Let us suppose that , as Y~—*O, the relevant behavior of o( and~~ (cf. 15)

is

~~~~ 
~~~~~‘ A ‘-‘- /3~ a~ —4 0. (19)

Then (16) becomes

4 ,. — —

~~~
-

~~
‘ —~ - F ~ ~ 

. (20)

The condition ~~ 
? is certainly satisfied if 0-. is large enough,

and then p tends to a strictly positive value as 17—’O , implying exponen-

tial increase of the mean field , and in particular of the external dipole

moment. This appears to be in fundamental conflict with the Bondi f Gold

resul t (7) , which applies when ~j 
0 whatever the complications of the

velocity field , and whether laminar or turbulent .

The conflict does not arise under the alternative limiting behavior

(12). In this case ,

~ 
(
~~~~~~

)—
~~

O
~~ 

~~~~~~~~~~ (21)

and the dipole moment does not grow exponentially in the limit Y),,—~Q

9. For dynamos of o~w-type , growth rates are generally given by

4~
- F’(X) x , (22)

where ~ is a measure of the shear associated with differential rotation .

The condition for dynamo action is now of the form

X > X
~~~ , 

(23)

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
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where X ,~ is model-dependent , but generally of order unity. Again under

the behavior (19), as ‘n, —~.O

X— ’ X~ 
(24)

and

(25)

and we encounter the same fundamental conflict with the Bondi 4 Gold result.

Under the alternative behavior (12),

~~ ~ t O I G O~• (26)

To determine the behavior of as —i 0 , we need to know the behavior

of F~ c’)as X— ~~oc, . If F(X)~ o (X)as X 
—~~o° , then p—t O

as .—
~~ a , and conflict with Bondi 4 Gold is avoided . The asymptotic

behavior of F (x) as X—i °° does not appear to have been investigated
for ~~w-dynamos in a spherical geometry . A clue is however provided by the

results for an oC.w-dynaino in a Cartesian geometry (modelling the galactic

disc). For this case, which can be solved completel y (M . ~~
‘ 9.9),

~ ( X )  - 
~~~~ X — ~ ~~~~~~~~, (27)

and so p —+0 as ~~~~~~ as required.

10. It is hard to escape the conclusion that the result (19) cannot be

correc t, or that , if it is correct in homogeneous turbulence, it is, for

some deep reason , not applicable when the turbulence is confined to a finite

region (see the remarks of ~ 6).
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A FLUX-LIN E METHOD FOR NUMERICAL STUDIIs 01 Kl\I ~ t-Ulc 1i~ \A~10~
Peter Olson

The sprectrum of the geomagnetic field and its rap id secular i-aria-

tion suggests that large magnetic Reynolds number conditions exist in the

earth ’s core . ( J~ ’n= s,~ ~~~~~ L , = conductivity , 1) and La are

velocity and length scales). h owever , there exists at present no acceptable

method for solving the induction equation under these conditions .

A method useful at large T~mis developed and applied to some likely
flows . A new feature is the use of random walks to simulate the diffusion

of magnetic field due finite electrical conductivity . The method is based

on a solution to the vorticity equation proposed by Chorin (1973). Given

the induction equation

~~~~~~Vx(!!
X
~~~)t t/R~~~~~~~~~~~~B (1)

in which B (mC. t 0) and ~~(Lt)  are specified ; the solution 13 at

some later time t is required .

First , the initial data ~ (~~,o) is partitioned into a number of
sl ender f lux  ropes, idealized as curves locally parallel to the field , the

density of curves proportional to the field’s intensity . These curves are

then represented by a number of sample points X’ along their length , the

distance between adjacent sample points L~ , and the average field inten-

sity between points B’

At each time step , ~ t, the sample points are advanced according to

~~
(t4

~~t):x(t)+ S V(X ~~’) o1t ’ .t i/V (0 , 2 .it/1~m) + ~~N(0 .2~~t/Rn.i) (2)

where N is a norma l ly  distributed random variable with zero mean and
2~~~t.standard derivation , and I. and 6 are unit vectors along the

curve ’s princ ipal normal and binormal .

The field intensity between each point is then recomputed using

6
1
(t+~~~t) ø

’
(t) ~~~~~~~ (3)

The first term on the right hand side of (2) solves 
~
5d
~

- Vx (vx ~
‘) while

the second and third terms in (2) solve i~f— I / F .m ~~~ 1~ by exploiting

the formal connection between random walks and diffusion from a line source.

Because of the random component in (2), the value of 13 at a point becomes
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uncertain; however, dynamo calculations usuall y require knowledge of global

functionals only, such as spherical harmonic coefficients .

The alogrithm defined by (2) and (3) app lied to a large number of

curves permits these average quantities to be computed as a function of

time , to within a statistical error. The difficulties associated with

finite difference representations of the Laplace operator are avoided , and

in addition the sample points tend to accumulate in those regions where the

greatest computational effort is needed .

As an application , induction by the nearly-geostrophic flow proposed

by Busse (1975) is studied . This flow is characterized by a primary geo-

strophic circulation about columns erected parallel to the rotation axis,

with Ekman suction providing flow along the columns and with it a non-zero

helicity . The domain is taken to be an isolated conducting sphere in which

eight columns (4 pai-rs) are arranged in a ring centered about the axis. The

initial field is an axial dipole .

With no helicity, the dipole field decreases with time for all

investigated ( R~...= 100 to 1000, based on the sphere radius). The mean

field in the core of each column decreased rapidly toward zero, a result

which may be interpreted as “flux expulsion .”

With helicity , growing fields occured for Rm~~ 250, although the

computations have yet to be carried out sufficiently far in time to show

true exponential behav ior .
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MAGNETOC ONV ECTION AT HIGH MAGNETIC REYNOLD S NUMBER
Michael R. E. Proctor

This paper investigates steady finite amplitude solutions of the

equations of a Buss inesq fluid heated uniformly from below in the presence
of an imposed vertical magnetic field . Several previous studies have con-

centrated on the linear stability problem (Chandrasekhar 1961, Danielson

1961), in which all quantities are only slightly perturbed from the basic

s tate. Thus the magnetic Reynolds number 1
~~pn = small , where U and
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are velocity and length scales and is the magnetic field is pushed

in to flux ropes and sheets as the convection becomes more vigorous and

becomes large (Weiss , 1966). The dynamical effect of this intermittent

flux structure is then quite different from the small case in particular ,

the dynamical effect of two-dimensional flux sheets is quite different from

that of axisymmetric ropes, although the linearised problem is independent

of the convection planforin. Busse (1975) has investigated the two-

dimensional problem when the total flux threading the system (measured by

Q B~ L~~~~~~~~~
.
~~~p v ~~

j 

where B0is the mean vertical field , ,IA the per-

meability and p and i) the density and kinematic viscosity) is small. He

finds that finite amplitude convection can occur for values of the Rayleigh

number R (measuring the temperature difference across the layer) much less

than that necessary for linear instability . Proctor and Galloway (1978)

have investigated the analogous problem in an axisymmetric geometry . The

analysis is simplified considerab ly compared to the two-dimensional case,

chiefly due to the fact that the axisymmetric flux rope that forms only

exerts a very localised dynamical effect . The analysis can be performed for

all Q for which the flux rope remains thin. This gives a limit of order

R 
~~
, / .?‘~ t~~ or Q , which is not severe . The methods used are those of

Galloway , Proctor, and Weiss (1978) (see also Proctor , these notes). The

results have some rather unusual features . In particular , the finite

amplitude solution is supercritical for very small Q , but becomes sub-

critical for all sufficiently large Q ! It is also interesting that R is

close to , the value for a set of instability in the absence of a magnetic

field , even for large values of ~~~‘ . The results suggest that there ms be

a region of steady finite amplitude behaviour even when linear they would

suggest that instability would appear as oscillations ; although no firm con-

clusions can be drawn within the confines of the analysis.
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—A VON KARMAN DISK DYNAMO

Kay A.  Robbins

The homopolar d isk dynamo with shunt exhibits nonperiodic reversals
which resemble those of the earth ’s field . In this model the distortion of

an initial noloidal field by the moving disk gives rise to a toroidal field

(7). The poloidal field is reinforced by an equivalent alpha effect supplied

by a shunt resistance. As the fields grow the Lorentz force slows the disk ,

and the fields decay when ohmic dissipation dominates the driving forces .

The LorerLtz force then decreases, the disk speeds up and the fields grow .

Reversals occur when the toroidal and poloidal fields are out of phase.

Studies of disk dynamos are suggestive , but cannot determine whether

this mechanism is responsible for oscillations and reversals in fluid

dynamos. This abstract describes some initial efforts in modeling this

phenomenon in a fluid dynamo. A major difficulty is the dominance of Coriolis

and Lorentz forces over inertial forces . Consider an infinite conducting

disk of thickness .1- which is in contact with a conducting fluid (figure 1).

The disk is free to rotate under a local applied torque ~~~~~~~ The motion

of the disk is opposed by the Lorentz force due to the currents in the disk.

Viscous stresses may also be added . A mechanism for oscillation similar to

that of the disk dynamo is thus provided (figure 2). Let the magnetic field
A A A 

~~ 4
in the fluid , 13 ~~~~~ r -

~ ~ b 
4’ * c~ and the velocity ~~. ru r ÷ rv 4~~ vi~~

A

where a, b , c, u, v, w , depend on z. &~ ~ are unit vectors in a

cylindrical coordinate system . Similarly in the disk ~~~~~ ~~ r ~ rg 4’ -~ ~~ 
-
~~

The equations can then be written

u~~ v~— ~~~ — * [~~~c - 2 b~J/(p~~) ~

ye - +w v ~~)~ I + c b ~~ / (p ,~~) +  t v ~~

- Ewa- u c +~~~~6].~~
* )..a. ~~

~ 
cv~ -wb ~ + ~ci~a.

’) .,.

2.a. ~ Zu.

where an alpha effec t, ~~~ , has been assumed to prov ide pol oidal f ield
rege neration. Subscrip ts are used to deno te par tial d i f fe rentiation.

~
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In the disk

~~~T4 ~~~~~~ ~~~~~~ he :2 ~

~~ is the angular velocity of the disk and !~.,is the rotation rate of the

fluid at infinity . Vis the fluid viscosity . k and a are the magnetic

diffusivities of the fluid and disk respectively.

At the disk fluid interface:

At the disk-insulator interface: ~ 0. it infinity ~ ~~ . 0
V .S10 - The insulating boundary conditions at infinity have been chosen

to insure that all dynamics occur near the disk.

Linear Steady State

Follow ing Loper (5) we can write :

~c~~ c~~(~f E i , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a ~B,( 0)”,uc~a.1 b 80( ‘

~~~

‘

A .~~~
rb

, C. =

f EB~(vfl.
’
~ r~, 9 ~~~~~~~~~~~~~~~ ~ I3~,f £13, ).‘4Ld~~

~ = 1 ~~~, ~~:~ )/(2 p~~,
), T~ erfl~, .t. fl~.

~ ~ I(~a /v)~”~/p o c  (~S~~~ci

If prime and dot denote differentiation with respect to and respectively,

then to zeroth order in €

?
“+2ri Q’+ .2~L?~ 0

where

~~~ 
_

~~~~~, ? and ci. is assumed to be constant .
For small ~ the solutions are

F: ~e , Q: ~~~~ e -L~0(~~i~~ ~~~= -‘i2T~ ~,

Q [~. / 4 ~AaL ~~~~~ 
+Q 1] ~A :  f~~+ ÷i(-.n4~~~ 3~ ,

)~~: 
_~ ( 1+ I)) / ( ’1’÷1~

Thus for each T and each value of the disk velocity, a stea dy state value of
1:3
~ 

is determined . For a unique stead y sol ution a nonlinear balance similar

~
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to that given for the outer solution of Chawla (3) or Loper (6) must be

assumed . The appearance of two rates of exponential decay in the magnetic

field indicates a two layer structure to the solution . When c(— sOthe second

term in the Q expression approaches a constant . Then c= 2ReL J o,d ~ }—O ~C)
as ~~~ —# -°~~. This also indicates that there is an outer layer~wh ich provides

a transition between the Ekman-Hartmann layer and the inviscid , current-free

fluid at oo . This outer nonlinear layer is the magnetic diffusion region

(MDR) discussed in (1 , 2, 4). A more complete description of the possible

steady states and the important question of whether or not such a model can

exhibit reversals will be addressed in future studies . The model is kine-

matic in the sense that the alpha effect is specified rather than derived

from dynamical considerations . To complete the connection between the

idealized model and the geodynamo , a p lausible poloidal regeneration mech-
anism , such as that furnished by an underlying small scale turbulent velocity J

field , is needed .

— --I
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Fie ld — —

‘1 j 4 a rt r~~~~rin
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•1’
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DIFFUSIVE INSTABILITIES IN MAGNETO-CONVECTION

Paul H. Roberts

It is now well established that even a uniform magnetic field can

facilitate thermal convection in a rapidly-rotating fluid . A non-uniform

f ie ld can , however, introduce a new class of ‘magnetic instabilities ’ which

are driven by curvature of the field lines, variation in magnetic intensity,

or both . It is of interest to study the interrelation between such magnetic

modes and the better understood ‘convective instabilities ’.

If diffusion effects are ignored a sufficient condition for convective

instability is that /

attain some 0(1) value . Here is the acceleration due to gravity, A is

the AlfvSn velocity, oc. the coefficient of volume expansion, 
~ T 

the tern-

perature contrast , and the length-scale. Once diffusive effects are

added , the criterion is changed to o~j.) where

d ~ t~ fl
fl. is the angular velocity and K the therma l diffus iv ity which we suppose

small compared w ith ~ , the magnetic diffusivity. (Viscos ity is ignored
except in thin boundary layers.) When A~/~~�2X>> J , as is for examp le true

in the Earth’ s core , ~R. and convection occurs first through the action

of diffusion. If t~T is fixed , the A minimuzing the critical value , t~k~ 

- -
~ 1

_ _ _
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of ~~ at wh ich convec tion f irst occurs is charac ter ized by ~~~= 0(I),
where 

~ 4~/2 S2 v1
is the El sasser number .

For simplicity, magnetic instabilities are usually studied in the

absence of buoyancy forces , and typically in the context of the westward
drift of the main geomagnetic field . If diffusion effects are ignored a

sufficient condition for magnetic instability is that

attains some 0(1) value . Once diffusive effects are added , this criterion

may be changed to E -:0.1), as recent work by Rober ts and Loper (1978)

shows. When 17/2fl d~’-~’- I , as is for example true in the Earth ’s core,

~ and magnetic instability occurs first through the action of

d iff usion.

A particularly interesting example is Malkus ’ (1967) model as genera-

lized by Eltayeb and Kumar (1977). A uniform current flows through a con- 
-

duc ting sphere of rad ius d. parallel to the ax is O~ of rotation , so that the

magnetic f ield B is zonal and proportional to distance s from to provide

buoyancy , a gravitational field directed towards, and proportional to dis-

tance r from, 0 is added together with a uniform distribution of heat

sources , 0 be ing the cen tre of the sphere . Quantities such as R1, ~~~~. , E.. , 
—

are compu ted using equatorial val ues of g, A and temperature gradien t
zST/J. Rober ts and Loper (1978) found tha t, although no purely magnetic
instabilities occurred , magnetic instability could be promoted by the addi- r
tion of a bottom-heavy dens ity distribution , i.e. by making Q~ negative.

Yery recent numerical resul ts by Fear n (to appear in 1979) exhibi t this and —

are shown on the follow ing figure , in which m is the preferred zonal wave-
number. His results strongly resemble those of Soward ’s (1978) plane layer , 

--

curved f ield l ine , model. The physical explanation of the paradoxical role

of buoyancy on the magnetic mode is still lacking .

II
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NONLINEAR ASPECTS OF CONVECTION WIT H STRONG MAGNETIC F IELDS

Andrew M. Soward

An electrically conducting Boussinesq fluid , conductivity ~ , kine-

matic viscosity ~V , density p is confined between two horizontal planes

distance ci.. apart . The fluid is permeated by a strong uniform horizontal

magnetic field Q0 and the entire system rotates rapidly about a vertical
axis with angular velocity .�1. . The fluid is heated from below and cooled

from above so that in the absence of motion there is an adverse temperature

/3 across the layer. The boundaries are rigid and perfect conductors of

both heat and electricity. Attention is restricted to small values of the

Ekman number E and the ratio o,
1,
of the thermal and magnetic diffusivities )( 4

and ~
‘ respectively;

In this parameter range marginal convection is steady and its character

depends upon the relative sizes of the Coriolis and Lorentz forces, wh ich

is measured by
~~~~~~~~~ L?0 .

For order one values of A , the critical Rayleigh number is large,

spec if ical ly
R~~9 L/~~~~~~~(E ) j

where is the acceleration due to gravity and °< is the coefficient of

expan sion . When A .~~. 2/VT , motion consists of a single roll , whose axis

is perpendicular to the applied magnetic field. On the other hand , when

A <. , two distinct rolls are possible: the axis of each roll lies

oblique but makes an equal angle to the applied magnetic field. Only the

latter case is discussed here .

The above linear results are well known (see Eltayeb (1972), Rober ts
and Stewartson (1972)). For the particular case of slippery boundaries , the

stability of a set of oblique rolls to perturbations of the other set has

also been considered by Roberts and Stewartson (1975). When <-< ) , they

found that both sets of rolls are unstable in the approximate range

I.0 79& > A ~ 2-~~Ji.
The objective of the present analysis is to clarify the nature of the

instability by considering the case of rigid boundaries . Though the con-

vection rolls themselves are largely uneffected by this modification , any
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geostrophic flow alighed with the applied magnetic field , which was pre-

viously arbitrary, is now damped by Ekman suction . The latter effect is

central to our treatment of the finite amplitude stability problem .

As the Rayleigh number is increased above its critical value , only
one of the two Sets of single rolls remains stable. The amplitude of the

stable rolls increase with 1k until a second critical Rayleigh number is
reached at which the system becomes unstable to unidirectional geostrophic

flow . Whether the instability sets in as a steady or osci l la tory shear f low
depends on the impor tance of damping by Ekman suction . (Note that, as a

result of approximations based upon small , Alfve n waves have been
filtered out). In either case, the roll amplitude remains largely unaltered

to further increase in the Rayleigh number with the consequence that the

geostrophic flow is stabilised . On the other hand , the amplitude of the

shear flow increases with R in a way which ensures the stability of the
convection rolls. For the particular case of a steady geostrophic flow , a

third critical value of R is isolated at which this shear becomes overstable
to small amplitude perturbations .
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THE STRUCTURE AND STABILITY OF VORTEX FILA MENTS
Sheila E. Widnall

Some models for the structure of a vortex filament are reviewed .

Several physical processes that result in vortex filaments are discussed and
some experimental measurements of vorticity distribution within a vortex

ring are shown (ref. 1).

The self- induced motion of vortex filaments is discussed and it is
shown how the method of matched asymptotic expansions can be used to remove

the logarithmic singularity in the classic cut-off formula for self-induced

motion of a curved filament to obtain the correct result for a filament with

arbitrary distribution of swirl and axial velocities (ref. 2).
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where .~~~ is chosen such that
en £ = An .~ -~~ -IA - c

where

a. -.-~, Vortex core size

4 ~~., swirl parameter

A :  
V cI r .- d( Y~l r/o..

V/a~~ o 
~~

V0 ‘- nondimensional swirl velocity; (if vorticity is uniform A = ¼)

and

C 2~ j

. 
p w~ dr~~~~~ the nondijnensional axial momentum flux j

A vortex filament with axial flow “slows down” (~~U ) until the Kutta-
Joukowski lift force p~~Ujris sufficient to balance the axial momentum flux

in the curved f il ament .

Several configurations of vortex filaments exist such that the self-

induced motions preserve their form. Examples are the ring, the hel ix , and
various combinations of line filaments . We have investigated the stability

of several of these self-preserving forms to long bending wave disturbances .

(The asymptotic result for self-induced motion can be used for long waves).

The Helical filament is unstable , ref .  3, the vortex pair is unstable , ref.
4, 5. The instability of the vortex ring is more difficult since the

observed instability is a short-wave with a complex modal structure in the

core. This instability has been extensively discussed (ref. 2, 6, 7) as has
the corresponding ins tabili ty for the single straight line fi l amen t in the

presence of a straining flow (ref.  8) .  The physical mechanism of the insta-

bility of both the long and short wave is similar : vortex filaments see a

background flow that corresponds to a straining or stagna tion point f low;
displacements along the diverging part of the flow in this field will diverge .

Self-induced rotation is a stabilizing effect enabling the vortex to move

into converging (stable) portions of the strain . If self-induced rotation

is weak (long waves) or absent (short waves at critical values of wavenumber)

_ -~~~~~~~~- - - --- - - - -“ - - -  -- - - - - -_- -~~~~~~~- 
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bending wave displacements diverge exponentially.

The presentation included a lecture demonstration of an unstable

\L )rte x ring in a water tank made visible by hydrogen bubbles .
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